Description

追逐影子的人,自己就是影子。 ——荷马

Allison 最近迷上了文学。她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的《荷马史诗》。但是由《奥德赛》和《伊利亚特》组成的鸿篇巨制《荷马史诗》实在是太长了,Allison 想通过一种编码方式使得它变得短一些。
一部《荷马史诗》中有 n 种不同的单词,从 1 到 n 进行编号。其中第 i 种单词出现的总次数为 wi。Allison 想要用 k 进制串 si 来替换第 i 种单词,使得其满足如下要求:
对于任意的 1≤i,j≤n,i≠j,都有:si 不是 sj 的前缀。
现在 Allison 想要知道,如何选择 si,才能使替换以后得到的新的《荷马史诗》长度最小。在确保总长度最小的情况下,Allison 还想知道最长的 si 的最短长度是多少?
一个字符串被称为 k 进制字符串,当且仅当它的每个字符是 0 到 k−1 之间(包括 0 和 k−1)的整数。
字符串 Str1 被称为字符串 Str2 的前缀,当且仅当:存在 1≤t≤m,使得 Str1=Str2[1..t]。其中,m 是字符串 Str2 的长度,Str2[1..t] 表示 Str2 的前 t 个字符组成的字符串。
 

Input

输入文件的第 1 行包含 2 个正整数 n,k,中间用单个空格隔开,表示共有 n 种单词,需要使用 k 进制字符串进行替换。

接下来 n 行,第 i+1 行包含 1 个非负整数 wi,表示第 i 种单词的出现次数。
 

Output

输出文件包括 2 行。

第 1 行输出 1 个整数,为《荷马史诗》经过重新编码以后的最短长度。
第 2 行输出 1 个整数,为保证最短总长度的情况下,最长字符串 si 的最短长度。
 

Sample Input

4 2
1
1
2
2

Sample Output

12
2

HINT

用 X(k) 表示 X 是以 k 进制表示的字符串。
一种最优方案:令 00(2) 替换第 1 种单词,01(2) 替换第 2 种单词,10(2) 替换第 3 种单词,11(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:
 
1×2+1×2+2×2+2×2=12
最长字符串 si 的长度为 2。
 
一种非最优方案:令 000(2) 替换第 1 种单词,001(2) 替换第 2 种单词,01(2) 替换第 3 种单词,1(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:
 
1×3+1×3+2×2+2×1=12
最长字符串 si 的长度为 3。与最优方案相比,文章的长度相同,但是最长字符串的长度更长一些。
 
对于所有数据,保证 2≤n≤100000,2≤k≤9。
 
选手请注意使用 64 位整数进行输入输出、存储和计算。

Source

到现在才会Huffman树的我,终于把这个坑给填了;

首先百度百科:

给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)

实现方法就是每次取堆中两个权值最小的点合并,然后用一个虚拟点代表这两个点,再放入堆中;

然后叶子节点的编码长度为到根的距离,然后编码就是从根往下走,如果是在左儿子中则为1,在右儿子中则为0;

这个题实际上就是要构建一棵k叉Huffman树,所以编码就是k进制的,编码原则和二叉类似;

因为构建Huffman树的话是不会出现某个编码是另一个编码的前缀的,所以没有问题(这个分类一下就清楚了);

然后我们按照普通Huffman树的构法,每次取k个点进行合并即可;然后还要求了到根的最长路径最短,那么我们在堆中以深度为第二关键字,优先合并深度大的;

注意可能取到后面就没有k个点了,所以我们需要把他补成满k叉树的叶子节点个数;

//MADE BY QT666
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
const int N=1000050;
struct data{ll v,dep;};
bool operator < (data a,data b){
if(a.v==b.v) return a.dep>b.dep;
return a.v>b.v;
}
priority_queue<data> Q;
ll v[N],ans,n,tot,k;
int main(){
scanf("%lld%lld",&n,&k);
for(int i=1;i<=n;i++) scanf("%lld",&v[i]),Q.push((data){v[i],1});
tot=n;
if((n-1)%(k-1)) tot+=(k-1-(n-1)%(k-1));
for(int i=n+1;i<=tot;i++) Q.push((data){0,1});
while(Q.size()>1){
ll tmp=0,res=0;
for(int i=1;i<=k;i++){
ans+=Q.top().v;
tmp+=Q.top().v,res=max(res,Q.top().dep);Q.pop();
}
if(Q.empty()){printf("%lld\n%lld",ans,res);}
Q.push((data){tmp,res+1});
}
return 0;
}

bzoj 4198: [Noi2015]荷马史诗的更多相关文章

  1. BZOJ 4198: [Noi2015]荷马史诗 哈夫曼树 k叉哈夫曼树

    https://www.lydsy.com/JudgeOnline/problem.php?id=4198 https://blog.csdn.net/chn_jz/article/details/7 ...

  2. bzoj 4198 [Noi2015]荷马史诗——哈夫曼树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4198 学习一下哈夫曼树.https://www.cnblogs.com/Zinn/p/940 ...

  3. bzoj 4198: [Noi2015]荷马史诗【哈夫曼树+贪心】

    和合并果子类似(但是是第一次听说哈夫曼树这种东西) 做法也类似,就是因为不用知道树的形态,所以贪心的把最小的k个点合为一个节点,然后依次向上累加即可,具体做法同合并果子(但是使用优先队列 注意这里可能 ...

  4. [BZOJ4198][Noi2015]荷马史诗

    4198: [Noi2015]荷马史诗 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 700  Solved: 365[Submit][Status] ...

  5. BZOJ_4198_[Noi2015]荷马史诗_huffman实现

    BZOJ_4198_[Noi2015]荷马史诗_huffman实现 题意: Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马史诗> ...

  6. 洛谷 P2168 [NOI2015]荷马史诗 解题报告

    P2168 [NOI2015]荷马史诗 题目描述 追逐影子的人,自己就是影子 --荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷 ...

  7. 【BZOJ4198】[Noi2015]荷马史诗 贪心+堆

    [BZOJ4198][Noi2015]荷马史诗 Description 追逐影子的人,自己就是影子. ——荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅 ...

  8. [UOJ#130][BZOJ4198][Noi2015]荷马史诗

    [UOJ#130][BZOJ4198][Noi2015]荷马史诗 试题描述 追逐影子的人,自己就是影子. ——荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静 ...

  9. BZOJ4198 & 洛谷2168 & UOJ130:[NOI2015]荷马史诗——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4198 https://www.luogu.org/problemnew/show/P2168 ht ...

随机推荐

  1. CentOS 7.2 配置mysql5.7

    准备篇:一.配置防火墙,开启80端口.3306端口CentOS 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙.1.关闭firewall:systemctl stop f ...

  2. springboot整合rabbitmq

    概述 RabbitMQ是一个开源的消息代理和队列服务器,用来通过普通协议在完全不同的应用之间共享数据,或者简单地将作业队列以便让分布式服务器进行处理. 它现实了AMQP协议,并且遵循Mozilla P ...

  3. 关于磁盘冗余阵列、热备、群集、负载均衡、云计算、F5、Nginx等的概念和基本原理

    在系统部署实施过程中,客户往往会关注系统的可用性方面的指标. 对于一个具备高可用性的系统来说, 多机部署方案是必不可少的. 我们这个知识分享,就从多个不同层面来介绍多机部署方案. ---------- ...

  4. django1.11如何实时访问mysql数据库

    前几天,一直在研究django框架,发现它自身封装了很多有用的API,很有意思.比如,数据库操作基本的创表,查询,插值,更新,删除都有,很方便,再加上json库可以直接将数据json化,通过服务器传给 ...

  5. Solr6.5.0配置中文分词器配置

    准备工作: solr6.5.0安装成功 1.去官网https://github.com/wks/ik-analyzer下载IK分词器 2.Solr集成IK a)将ik-analyzer-solr6.x ...

  6. Python的字符编码

    Python的字符编码 1. Python字符编码简介 1. 1  ASCII Python解释器在加载.py文件的代码时,会对内容进行编码,一般默认为ASCII码.ASCII(American St ...

  7. Web离线应用解决方案——ServiceWorker

    什么是ServiceWorker 在介绍ServiceWorker之前,我们先来谈谈PWA.PWA (Progressive Web Apps) 是一种 Web App 新模型,并不是具体指某一种前沿 ...

  8. 》》HTML5 移动页面自适应手机屏幕四类方法

    1.使用meta标签:viewport H5移动端页面自适应普遍使用的方法,理论上讲使用这个标签是可以适应所有尺寸的屏幕的,但是各设备对该标签的解释方式及支持程度不同造成了不能兼容所有浏览器或系统. ...

  9. JavaScript 插件的书页翻转效果

    Flipbooks书页面翻转成为在网页设计中最流行的交互动画之中的一个. 他们能够用在 Flash,网页或者在线杂志中.使用书页动画或者页面翻转的网页设计效果展示他们的产品,更加直观有效. 结合 HT ...

  10. Highcharts使用CSV格式数据绘制图表

    Highcharts使用CSV格式数据绘制图表 CSV(Comma-Separated Values,逗号分隔值文本格式)是採用逗号切割的纯文本数据.通常情况下.每一个数据之间使用逗号切割,几个相关数 ...