Akka-http的客户端连接模式除Connection-Level和Host-Level之外还有一种非常便利的模式:Request-Level-Api。这种模式免除了连接Connection的概念,任何时候可以直接调用singleRequest来与服务端沟通。下面我们用几个例子来示范singleRequest的用法:

  (for {
response <- Http().singleRequest(HttpRequest(method=HttpMethods.GET,uri="http://localhost:8011/message"))
message <- Unmarshal(response.entity).to[String]
} yield message).andThen {
case Success(msg) => println(s"Received message: $msg")
case Failure(err) => println(s"Error: ${err.getMessage}")
}.andThen {case _ => sys.terminate()}

这是一个GET操作:用Http().singleRequest直接把HttpRequest发送给服务端uri并获取返回的HttpResponse。我们看到,整组函数的返回类型都是Future[?],所以用for-comprehension来把所有实际运算包嵌在Future运算模式内(context)。下面这个例子是客户端上传数据示范:

 (for {
entity <- Marshal("Wata hell you doing?").to[RequestEntity]
response <- Http().singleRequest(HttpRequest(method=HttpMethods.PUT,uri="http://localhost:8011/message",entity=entity))
message <- Unmarshal(response.entity).to[String]
} yield message).andThen {
case Success(msg) => println(s"Received message: $msg")
case Failure(err) => println(s"Error: ${err.getMessage}")
}.andThen {case _ => sys.terminate()}

以上是个PUT操作。我们需要先构建数据载体HttpEntity。格式转换函数Marshal也返回Future[HttpEntity],所以也可以包含在for语句内。关注一下这个andThen,它可以连接一串多个monadic运算,在不影响上游运算结果的情况下实现一些副作用计算。值得注意的是上面这两个例子虽然表现形式很简洁,但我们无法对数据转换过程中的异常及response的状态码等进行监控。所以我们应该把整个过程拆分成两部分:先获取response,再具体处理response,包括核对状态,处理数据等:

  case class Item(id: Int, name: String, price: Double)

  def getItem(itemId: Int): Future[HttpResponse] = for {
response <- Http().singleRequest(HttpRequest(method=HttpMethods.GET,uri = s"http://localhost:8011/item/$itemId"))
} yield response def extractEntity[T](futResp: Future[HttpResponse])(implicit um: Unmarshaller[ResponseEntity,T]) = {
futResp.andThen {
case Success(HttpResponse(StatusCodes.OK, _, entity, _)) =>
Unmarshal(entity).to[T]
.onComplete {
case Success(t) => println(s"Got response entity: ${t}")
case Failure(e) => println(s"Unmarshalling failed: ${e.getMessage}")
}
case Success(_) => println("Exception in response!")
case Failure(err) => println(s"Response Failed: ${err.getMessage}")
}
}
extractEntity[Item](getItem())

现在这个extractEntity[Item](getItem(13))可以实现全过程的监控管理了。用同样的模式实现PUT操作:

  def putItem(item: Item): Future[HttpResponse] =
for {
reqEntity <- Marshal(item).to[RequestEntity]
response <- Http().singleRequest(HttpRequest(method=HttpMethods.PUT,uri="http://localhost:8011/item",entity=reqEntity))
} yield response extractEntity[Item](putItem(Item(,"Item#23", 46.0)))
.andThen { case _ => sys.terminate()}

当然,我们还是使用了前面几篇讨论里的Marshalling方式来进行数据格式的自动转换:

import de.heikoseeberger.akkahttpjson4s.Json4sSupport
import org.json4s.jackson
...
trait JsonCodec extends Json4sSupport {
import org.json4s.DefaultFormats
import org.json4s.ext.JodaTimeSerializers
implicit val serilizer = jackson.Serialization
implicit val formats = DefaultFormats ++ JodaTimeSerializers.all
}
object JsConverters extends JsonCodec
...
import JsConverters._ implicit val jsonStreamingSupport = EntityStreamingSupport.json()
.withParallelMarshalling(parallelism = , unordered = false)

如果我们需要对数据交换过程进行更细致的管控,用Host-Level-Api会更加适合。下面我们就针对Host-Level-Api构建一个客户端的工具库:

class PooledClient(host: String, port: Int, poolSettings: ConnectionPoolSettings)
(implicit sys: ActorSystem, mat: ActorMaterializer) { import sys.dispatcher private val cnnPool: Flow[(HttpRequest, Int), (Try[HttpResponse], Int), Http.HostConnectionPool] =
Http().cachedHostConnectionPool[Int](host = host, port = port, settings = poolSettings)
//单一request
def requestSingleResponse(req: HttpRequest): Future[HttpResponse] = {
Source.single(req -> )
.via(cnnPool)
.runWith(Sink.head).flatMap {
case (Success(resp), _) => Future.successful(resp)
case (Failure(fail), _) => Future.failed(fail)
}
}
//组串request
def orderedResponses(reqs: Iterable[HttpRequest]): Future[Iterable[HttpResponse]] = {
Source(reqs.zipWithIndex.toMap)
.via(cnnPool)
.runFold(SortedMap[Int, Future[HttpResponse]]()) {
case (m, (Success(r), idx)) => m + (idx -> Future.successful(r))
case (m, (Failure(f), idx)) => m + (idx -> Future.failed(f))
}.flatMap { m => Future.sequence(m.values) }
}
}

下面是一种比较安全的模式:使用了queue来暂存request从而解决因发送方与接收方速率不同所产生的问题:

class QueuedRequestsClient(host: String, port: Int, poolSettings: ConnectionPoolSettings)
(qsize: Int = , overflowStrategy: OverflowStrategy = OverflowStrategy.dropNew)
(implicit sys: ActorSystem, mat: ActorMaterializer) {
import sys.dispatcher
private val cnnPool: Flow[(HttpRequest,Promise[HttpResponse]),(Try[HttpResponse],Promise[HttpResponse]),Http.HostConnectionPool] =
Http().cachedHostConnectionPool[Promise[HttpResponse]](host=host,port=port,settings=poolSettings) val queue =
Source.queue[(HttpRequest, Promise[HttpResponse])](qsize, overflowStrategy)
.via(cnnPool)
.to(Sink.foreach({
case ((Success(resp), p)) => p.success(resp)
case ((Failure(e), p)) => p.failure(e)
})).run() def queueRequest(request: HttpRequest): Future[HttpResponse] = {
val responsePromise = Promise[HttpResponse]()
queue.offer(request -> responsePromise).flatMap {
case QueueOfferResult.Enqueued => responsePromise.future
case QueueOfferResult.Dropped => Future.failed(new RuntimeException("Queue overflowed. Try again later."))
case QueueOfferResult.Failure(ex) => Future.failed(ex)
case QueueOfferResult.QueueClosed => Future.failed(new RuntimeException("Queue was closed (pool shut down) while running the request. Try again later."))
}
}
}

下面是这些工具函数的具体使用示范:

  val settings = ConnectionPoolSettings(sys)
.withMaxConnections()
.withMaxOpenRequests()
.withMaxRetries()
.withPipeliningLimit()
val pooledClient = new PooledClient("localhost",,settings) def getItemByPool(itemId: Int): Future[HttpResponse] = for {
response <- pooledClient.requestSingleResponse(HttpRequest(method=HttpMethods.GET,uri = s"http://localhost:8011/item/$itemId"))
} yield response extractEntity[Item](getItemByPool()) def getItemsByPool(itemIds: List[Int]): Future[Iterable[HttpResponse]] = {
val reqs = itemIds.map { id =>
HttpRequest(method = HttpMethods.GET, uri = s"http://localhost:8011/item/$id")
}
val rets = (for {
responses <- pooledClient.orderedResponses(reqs)
} yield responses)
rets
}
val futResps = getItemsByPool(List(,,)) futResps.andThen {
case Success(listOfResps) => {
listOfResps.foreach { r =>
r match {
case HttpResponse(StatusCodes.OK, _, entity, _) =>
Unmarshal(entity).to[Item]
.onComplete {
case Success(t) => println(s"Got response entity: ${t}")
case Failure(e) => println(s"Unmarshalling failed: ${e.getMessage}")
}
case _ => println("Exception in response!")
}
}
}
case _ => println("Failed to get list of responses!")
} val queuedClient = new QueuedRequestsClient("localhost",,settings)() def putItemByQueue(item: Item): Future[HttpResponse] =
for {
reqEntity <- Marshal(item).to[RequestEntity]
response <- queuedClient.queueRequest(HttpRequest(method=HttpMethods.PUT,uri="http://localhost:8011/item",entity=reqEntity))
} yield response extractEntity[Item](putItemByQueue(Item(,"Item#23", 46.0)))
.andThen { case _ => sys.terminate()}

下面是本次讨论的示范源代码:

服务端代码:

import akka.actor._
import akka.stream._
import akka.http.scaladsl.Http
import akka.http.scaladsl.server.Directives._ import de.heikoseeberger.akkahttpjson4s.Json4sSupport
import org.json4s.jackson
trait JsonCodec extends Json4sSupport {
import org.json4s.DefaultFormats
import org.json4s.ext.JodaTimeSerializers
implicit val serilizer = jackson.Serialization
implicit val formats = DefaultFormats ++ JodaTimeSerializers.all
}
object JsConverters extends JsonCodec object TestServer extends App with JsonCodec {
implicit val httpSys = ActorSystem("httpSystem")
implicit val httpMat = ActorMaterializer()
implicit val httpEC = httpSys.dispatcher import JsConverters._ case class Item(id: Int, name: String, price: Double)
val messages = path("message") {
get {
complete("hello, how are you?")
} ~
put {
entity(as[String]) {msg =>
complete(msg)
}
}
}
val items =
(path("item" / IntNumber) & get) { id =>
get {
complete(Item(id, s"item#$id", id * 2.0))
}
} ~
(path("item") & put) {
entity(as[Item]) {item =>
complete(item)
}
} val route = messages ~ items val (host, port) = ("localhost", ) val bindingFuture = Http().bindAndHandle(route,host,port) println(s"Server running at $host $port. Press any key to exit ...") scala.io.StdIn.readLine() bindingFuture.flatMap(_.unbind())
.onComplete(_ => httpSys.terminate()) }

客户端源代码:

import akka.actor._
import akka.http.scaladsl.settings.ConnectionPoolSettings
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka.http.scaladsl.model._ import scala.util._
import de.heikoseeberger.akkahttpjson4s.Json4sSupport
import org.json4s.jackson import scala.concurrent._
import akka.http.scaladsl.unmarshalling.Unmarshal
import akka.http.scaladsl.unmarshalling._
import akka.http.scaladsl.marshalling.Marshal import scala.collection.SortedMap
import akka.http.scaladsl.common._ trait JsonCodec extends Json4sSupport {
import org.json4s.DefaultFormats
import org.json4s.ext.JodaTimeSerializers
implicit val serilizer = jackson.Serialization
implicit val formats = DefaultFormats ++ JodaTimeSerializers.all
}
object JsConverters extends JsonCodec class PooledClient(host: String, port: Int, poolSettings: ConnectionPoolSettings)
(implicit sys: ActorSystem, mat: ActorMaterializer) { import sys.dispatcher private val cnnPool: Flow[(HttpRequest, Int), (Try[HttpResponse], Int), Http.HostConnectionPool] =
Http().cachedHostConnectionPool[Int](host = host, port = port, settings = poolSettings) def requestSingleResponse(req: HttpRequest): Future[HttpResponse] = {
Source.single(req -> )
.via(cnnPool)
.runWith(Sink.head).flatMap {
case (Success(resp), _) => Future.successful(resp)
case (Failure(fail), _) => Future.failed(fail)
}
} def orderedResponses(reqs: Iterable[HttpRequest]): Future[Iterable[HttpResponse]] = {
Source(reqs.zipWithIndex.toMap)
.via(cnnPool)
.runFold(SortedMap[Int, Future[HttpResponse]]()) {
case (m, (Success(r), idx)) => m + (idx -> Future.successful(r))
case (m, (Failure(f), idx)) => m + (idx -> Future.failed(f))
}.flatMap { m => Future.sequence(m.values) }
}
}
class QueuedRequestsClient(host: String, port: Int, poolSettings: ConnectionPoolSettings)
(qsize: Int = , overflowStrategy: OverflowStrategy = OverflowStrategy.dropNew)
(implicit sys: ActorSystem, mat: ActorMaterializer) {
import sys.dispatcher
private val cnnPool: Flow[(HttpRequest,Promise[HttpResponse]),(Try[HttpResponse],Promise[HttpResponse]),Http.HostConnectionPool] =
Http().cachedHostConnectionPool[Promise[HttpResponse]](host=host,port=port,settings=poolSettings) val queue =
Source.queue[(HttpRequest, Promise[HttpResponse])](qsize, overflowStrategy)
.via(cnnPool)
.to(Sink.foreach({
case ((Success(resp), p)) => p.success(resp)
case ((Failure(e), p)) => p.failure(e)
})).run() def queueRequest(request: HttpRequest): Future[HttpResponse] = {
val responsePromise = Promise[HttpResponse]()
queue.offer(request -> responsePromise).flatMap {
case QueueOfferResult.Enqueued => responsePromise.future
case QueueOfferResult.Dropped => Future.failed(new RuntimeException("Queue overflowed. Try again later."))
case QueueOfferResult.Failure(ex) => Future.failed(ex)
case QueueOfferResult.QueueClosed => Future.failed(new RuntimeException("Queue was closed (pool shut down) while running the request. Try again later."))
}
}
}
object ClientRequesting extends App {
import JsConverters._ implicit val sys = ActorSystem("sysClient")
implicit val mat = ActorMaterializer()
implicit val ec = sys.dispatcher implicit val jsonStreamingSupport = EntityStreamingSupport.json()
.withParallelMarshalling(parallelism = , unordered = false) case class Item(id: Int, name: String, price: Double) def extractEntity[T](futResp: Future[HttpResponse])(implicit um: Unmarshaller[ResponseEntity,T]) = {
futResp.andThen {
case Success(HttpResponse(StatusCodes.OK, _, entity, _)) =>
Unmarshal(entity).to[T]
.onComplete {
case Success(t) => println(s"Got response entity: ${t}")
case Failure(e) => println(s"Unmarshalling failed: ${e.getMessage}")
}
case Success(_) => println("Exception in response!")
case Failure(err) => println(s"Response Failed: ${err.getMessage}")
}
} (for {
response <- Http().singleRequest(HttpRequest(method=HttpMethods.GET,uri="http://localhost:8011/message"))
message <- Unmarshal(response.entity).to[String]
} yield message).andThen {
case Success(msg) => println(s"Received message: $msg")
case Failure(err) => println(s"Error: ${err.getMessage}")
} //.andThen {case _ => sys.terminate()} (for {
entity <- Marshal("Wata hell you doing?").to[RequestEntity]
response <- Http().singleRequest(HttpRequest(method=HttpMethods.PUT,uri="http://localhost:8011/message",entity=entity))
message <- Unmarshal(response.entity).to[String]
} yield message).andThen {
case Success(msg) => println(s"Received message: $msg")
case Failure(err) => println(s"Error: ${err.getMessage}")
} //.andThen {case _ => sys.terminate()} def getItem(itemId: Int): Future[HttpResponse] = for {
response <- Http().singleRequest(HttpRequest(method=HttpMethods.GET,uri = s"http://localhost:8011/item/$itemId"))
} yield response extractEntity[Item](getItem()) def putItem(item: Item): Future[HttpResponse] =
for {
reqEntity <- Marshal(item).to[RequestEntity]
response <- Http().singleRequest(HttpRequest(method=HttpMethods.PUT,uri="http://localhost:8011/item",entity=reqEntity))
} yield response extractEntity[Item](putItem(Item(,"Item#23", 46.0)))
.andThen { case _ => sys.terminate()} val settings = ConnectionPoolSettings(sys)
.withMaxConnections()
.withMaxOpenRequests()
.withMaxRetries()
.withPipeliningLimit()
val pooledClient = new PooledClient("localhost",,settings) def getItemByPool(itemId: Int): Future[HttpResponse] = for {
response <- pooledClient.requestSingleResponse(HttpRequest(method=HttpMethods.GET,uri = s"http://localhost:8011/item/$itemId"))
} yield response extractEntity[Item](getItemByPool()) def getItemsByPool(itemIds: List[Int]): Future[Iterable[HttpResponse]] = {
val reqs = itemIds.map { id =>
HttpRequest(method = HttpMethods.GET, uri = s"http://localhost:8011/item/$id")
}
val rets = (for {
responses <- pooledClient.orderedResponses(reqs)
} yield responses)
rets
}
val futResps = getItemsByPool(List(,,)) futResps.andThen {
case Success(listOfResps) => {
listOfResps.foreach { r =>
r match {
case HttpResponse(StatusCodes.OK, _, entity, _) =>
Unmarshal(entity).to[Item]
.onComplete {
case Success(t) => println(s"Got response entity: ${t}")
case Failure(e) => println(s"Unmarshalling failed: ${e.getMessage}")
}
case _ => println("Exception in response!")
}
}
}
case _ => println("Failed to get list of responses!")
} val queuedClient = new QueuedRequestsClient("localhost",,settings)() def putItemByQueue(item: Item): Future[HttpResponse] =
for {
reqEntity <- Marshal(item).to[RequestEntity]
response <- queuedClient.queueRequest(HttpRequest(method=HttpMethods.PUT,uri="http://localhost:8011/item",entity=reqEntity))
} yield response extractEntity[Item](putItemByQueue(Item(,"Item#23", 46.0)))
.andThen { case _ => sys.terminate()} }

Akka(37): Http:客户端操作模式的更多相关文章

  1. HDFS的Java客户端操作代码(HDFS的查看、创建)

    1.HDFS的put上传文件操作的java代码: package Hdfs; import java.io.FileInputStream; import java.io.FileNotFoundEx ...

  2. arm9的操作模式,寄存器,寻址方式

    工作模式 Arm有7种工作模式: 名称 简称 简介 User Usr 正常用户程序执行的模式(linux下用户程序就是在这一模式执行的.) FIQ Fiq 快速中断模式 IRQ Irq 普通中断模式 ...

  3. IdentityServer4 (1) 客户端授权模式(Client Credentials)

    写在前面 1.源码(.Net Core 2.2) git地址:https://github.com/yizhaoxian/CoreIdentityServer4Demo.git 2.相关章节 2.1. ...

  4. PYTHON工业互联网应用实战12—客户端操作

    本章节我们将实现与admin里类似的列操作"下达"功能,演示客户端是如何实现操作功能,同时,演示也会强调一点,何时合并你的功能代码,避免相同功能使用不同的代码段来实现,在企业开发中 ...

  5. ListView多选操作模式——上下文操作模式

    1.什么叫上下文操作模式 2.如何进入上下文操作模式 1.ListView自身带了单选.多选模式,可通过listview.setChoiceMode来设置: listview.setChoiceMod ...

  6. java web 获取客户端操作系统信息

    package com.java.basic.pattern; import java.util.regex.Matcher; import java.util.regex.Pattern; /** ...

  7. Hadoop系列007-HDFS客户端操作

    title: Hadoop系列007-HDFS客户端操作 date: 2018-12-6 15:52:55 updated: 2018-12-6 15:52:55 categories: Hadoop ...

  8. pytthon—day8 读写模式的结合、文件操作模式、with完成文本文件复制、游标操作

    一.读写模式的结合 w:写指没有新建文件,有文件就清空 w=open('1.txt','w',encoding='utf-8') w.write('000\n') 在写入数据时,需要及时处理内存空间, ...

  9. 使用Java客户端操作elasticsearch(二)

    承接上文,使用Java客户端操作elasticsearch,本文主要介绍 常见的配置 和Sniffer(集群探测) 的使用. 常见的配置 前面已介绍过,RestClientBuilder支持同时提供一 ...

随机推荐

  1. c#中字节数组byte[]、图片image、流stream,字符串string、内存流MemoryStream、文件file,之间的转换

    字节数组byte[]与图片image之间的转化 字节数组转换成图片 public static Image byte2img(byte[] buffer) { MemoryStream ms = ne ...

  2. invalid types 'int[int]' for array subscript// EOF 输入多组数据//如何键盘输入EOF

    数组维度搞错了 一次运行,要输入多组数据,直到读至输入文件末尾(EOF)为止 while(scanf("%d %d",&a, &b) != EOF) // 输入结束 ...

  3. C# 基础之类型(一)

    一.类型 类型总共分为两种,一种是值类型(Value Type),如枚举.结构:另一种是引用类型(Reference Type),如类.接口.委托等. 值类型 1,值类型通常分配在线程的堆栈上 2,作 ...

  4. 张高兴的 Xamarin.Android 学习笔记:(四)常用控件

    示例地址 GitHub : https://github.com/ZhangGaoxing/xamarin-android-demo/tree/master/ControlsDemo

  5. C# App 中嵌入 Chrome 浏览器

    http://www.codeceo.com/article/cefsharp-charp-app-chrome.html http://developer.51cto.com/art/201304/ ...

  6. C#中的协变(Covariance)和逆变(Contravariance)

    摘要 ● 协变和逆变的定义是什么?给我们带来了什么便利?如何应用? ● 对于可变的泛型接口,为什么要区分成协变的和逆变的两种?只要一种不是更方便吗? ● 为什么还有不可变的泛型接口,为什么有的泛型接口 ...

  7. Windows下Mysql常用操作命令

    以下命令中的服务启动及停止需要使用以管理员身份运行cmd.exe. 1.启动Mysql服务:net start [mysql服务名].示例: net start mysql57 结果: 2.停止Mys ...

  8. MySQL索引(2)

    一.索引基础 1. B-Tree索引 <1> 所有的值都是按顺序存储的,并且每一个叶子页到根的距离相同. <2> 顺序组织存储,很适合查找范围数据,效率会非常高. <3& ...

  9. ASP.NET Core 开源GitServer 实现自己的GitHub

    ASP.NET Core 2.0 开源Git HTTP Server,实现类似 GitHub.GitLab. GitHub:https://github.com/linezero/GitServer ...

  10. 四、MVC简介

    一.高内聚.低耦合 大学的时候,上过一门叫<软件工程>的课程,课程中讲到了耦合,解耦等相关的词汇,当时很懵懂,不解其意. 耦合:是指两个或两个以上的体系或两种运动形式间通过相互作用而彼此影 ...