课程链接:http://open.163.com/special/opencourse/algorithms.html

第一课:算法分析基础

1.介绍插入排序与归并排序,计算并比较最坏运行时间

2.算法分析重点与渐近分析方法

以下为个人笔记,根据字幕整理


第一课 算法分析
总结 解决问题的方法和方式
算法:关于计算机程序性能和资源利用的研究

算法:性能、速度

在程序设计方面,什么比性能更重要呢?
  正确性,可维护,健壮性
  模块化,安全,用户友好

为什么关注性能?
1.直接决定方法可行不可行
  算法能将不可行变为可行
2.算法是一种描述程序行为的语言
  思考程序的最简洁方式

性能是支付其他东西的“货币”
安全 用户友好 健壮性
    |         | |           |
           性能
衡量代价的一般标准

为什么关注速度?
追求速度是人的天性

、、、、、、、、、、、、、、

排序算法

排序问题的一般描述
输入:序列 a1, a2, a3, ..., an
按需求重新排序
输出:序列 b1, b2, b3, ..., bn

1.插入排序

伪代码描述:
理解算法要描述的意思,简洁
使用缩进表示嵌套

按照升序排列

for j<- 2 to n
  do key<- A[j] //从数组A中取值
  i<- j-1
  while i>0 and A[i]> key //前向查找较大值
    do A[i+1]<- A[i]
    i<- i-1 //i递减至0
  A[i+1]<- key

实例 8 2 4 9 3 6
一次 2 8 4 9 3 6
二次 2 4 8 9 3 6
三次 2 4 8 9 3 6
四次 2 3 4 8 9 6
五次 2 3 4 6 8 9

最坏情况分析
最大占首位,最小占末位

操作数计数:内存引用计数
T(n) = sum _{2->n}( theta(j) )
算术级数 theta(n^2)

小规模n 快速
大规模n 慢
、、、、、、、、、、、、、、、、、、、、、、、、、、

程序分析:
1.运行时间
输入是否有序
输入规模
运行时间上界:对用户的承诺

最关注:
最坏情况分析
T(n) 输入规模为n时的运行时间上界
平均情况分析
T(n) 输入规模为n时,运行时间的期望值

算法的大局观
1.算法涉及诸多领域
2.解决复杂问题

渐近分析
1.忽略依赖于机器的常量
2.关注运行时间的增长,而不是运行时间

相对速度 绝对速度

渐近符号
theta符号函数
theta(n) = 3n^2 + 9n^2 + 5n
去掉常数项、低阶项

数学的严谨,工程的直觉
在两者间找到一种平衡,较好的算法

低速算法
当输入规模在合理范围时,运行速度较快

、、、、、、、、、、、、、、、、、、、、、、、、、、、

归并排序
if n==1 done
else recursively sort
  A[1 ... celi(n/2) ] //ceil向上取整
  A[ celi(n/2)+1 ... n ]
last merge 2 sub sorted list

归并子程序

两个子排序结果:
list[1] 20 13 7 2
list[1] 12 11 9 1

遍历与归并时间
T(n)

递归式
n=1 T(n)=theta(1)
n>1 T(n)=2T(n/2)+theta(n)
-----------------------
如何求解递归式?
-----------------------
递归树
T(n)
T(n/2) T(n/2)
T(n/4) ... T(n/4)
... ...
T(1)  ... ... T(1)

计算量
C(n)
C(n/2) C(n/2)
C(n/4) C(n/4)
... ...
C(1)  ... ... C(1)

高度 log(n)
叶节点数目 n
计算量

cn*log(n) + theta(n)
=theta(n*log(n))

as long as you are rigorous and precise,
you can be as sloppy as you want.
只要你严格而精确,可以略去任意细节

MIT公开课:算法导论 笔记(一)的更多相关文章

  1. MIT算法导论笔记

    详细MIT算法导论笔记 (网络链接) 第一讲:课程简介及算法分析 (Sheridan) 第二讲:渐近符号.递归及解法  (Sheridan) 第三讲:分治法(1)(Sheridan) 第四讲:快排及随 ...

  2. c++拷贝构造函数(翁恺c++公开课[26-27]学习笔记)

    这节课在p26.拷贝构造中讲的很清楚,建议大家耐心的去看下. 什么时候会发生拷贝构造: 对象之间的初始化赋值 使用对象作为变量进行函数传参(通常使用引用来传参从而减去不必要的拷贝构造,提高效率和代码健 ...

  3. c++子类父类关系(翁恺c++公开课[15-16]学习笔记)

    关于类的继承有三种:public继承.private继承.protected继承 首先说明,关于类的成员变量.函数的权限有三种(public.private.protected) 我们通常会让所有的成 ...

  4. c++模板(翁恺c++公开课[34-35]学习笔记)

    为什么要有模板(templates):当我们需要一个列表(list),列表中元素可能都为X类型也可能都为Y类型,怎么来实现呢? 定义基类?可以实现,很多情况下可能不够简明的表达设计思想 克隆代码(写一 ...

  5. c++中的运算符重载operator2(翁恺c++公开课[31-33]学习笔记)

    上一篇operator1中,大概说了下重载的基本用法,接下来对c++中常见的可重载运算符归一下类,说一下它们的返回值,讨论下较为复杂的运算符重载上的坑

  6. c++中的运算符重载operator1(翁恺c++公开课[30]学习笔记)

    运算符重载规则: 只有已经存在的运算符才能被重载,不能自己制造一个c++中没有的运算符进行重载 重载可以在类或枚举类型内进行,也可以是全局函数,但int.float这种已有的类型内是不被允许的 不能二 ...

  7. static在c\c++中的作用(翁恺c++公开课[28-29]学习笔记)

    static相对来说是一个较复杂的修饰符,c++中的static在c的基础之上又包含了static在类中的应用(也就是说多了static的成员变量和static的成员函数):c\c++中静态变量.对象 ...

  8. 算法导论笔记:18B树

    磁盘作为辅存,它的容量要比内存大得多,但是速度也要慢许多,下面就是磁盘的的结构图: 磁盘驱动器由一个或多个盘片组成,它们以固定的速度绕着主轴旋转,数据存储于盘片的表面,磁盘驱动器通过磁臂末尾的磁头来读 ...

  9. 算法导论笔记——第二十章 van Emde Boas树

    当关键字是有界范围内的整数时,能够规避Ω(lglgn)下界的限制,那么在类似的场景下,我们应弄清楚o(lgn)时间内是否可以完成优先队列的每个操作.在本章中,我们将看到:van Emde Boas树支 ...

随机推荐

  1. Java定时器应用

    在Java多线程中,有的时候,我们需要按照指定间隔时间来执行一些任务,这时,我们就要用到定时器.我们在这里以Java中的Timer定时器为例,演示定时器的应用. 请看下述代码: import java ...

  2. xml文件生成方式一(字符串拼接,将多实体类对象写入xml文件)

    1.xml文件生成,拼接字符串使用StringBuffer或StringBuilder 2.拼接好后写入文件即可,将多个实体类写入xml文件 3.这种方式比较简单,但是操作也比较麻烦 4.下面是我的代 ...

  3. 闲来无事做了一个批处理的win10账号管理

    @echo off %1 mshta vbscript:CreateObject("Shell.Application").ShellExecute("cmd.exe&q ...

  4. c#访问oracle数据库

    想在c#中访问oracle数据库,毕竟是开发,想要轻量级访问oracle,客户机上无需安装oracle环境就能正常运行程序. 在网上找了相关资料,只需要引用一个dll即可实现. 访问代码(需引用dll ...

  5. mysql数据库出现2003-Can't connect to MySQL server on 'localhost' (10061)的解决方法

    1.右键点击我的电脑,找到管理! 2.找到服务和应用程序: 3.打开找到服务,打开: 4.在服务里找到MySQL,改成启动:

  6. Volatile的作用

    众所周知,volatile关键字可以让线程的修改立刻通知其他的线程,从而达到数据一致的作用.那么它具体涉及到哪些内容呢? 关于缓存 计算机最大的存储空间就是磁盘(硬盘),但是访问的速度也是最慢的,价格 ...

  7. windows64 系统下安装Nodejs

    1.nodejs安装: 版本号: node-v8.9.3-x64 检测安装成功:(这个版本已经集成了npm) 2.npm作为一个NodeJS的模块管理,先配置npm的全局模块的存放路径以及cache的 ...

  8. Python的*args与**kwargs

    当Python的函数的参数不确定时,可以使用*args与**kwargs来指代不定数量的参数. 两者的区别是,*args是个tuple(元组),而**kwargs是个dict(字典). 先通过代码来验 ...

  9. Ant Design Pro 学习一 安装

    安装: 直接 clone git 仓库 $ git clone --depth=1 https://github.com/ant-design/ant-design-pro.git my-projec ...

  10. 如何在MicroPython TPYBoard 添加自定义类库

    开始之前,首先要感谢一下TPYBoard技术交流群(157816561)-云之初晓网友的分享.   今天简单分享下如何将自己编写的一些Python脚本的类库添加到固件中,在使用时只需import调用, ...