在前面一篇讨论里我们介绍了通过http进行文件的交换。因为文件内容是以一堆bytes来表示的,而http消息的数据部分也是byte类型的,所以我们可以直接用Source[ByteString,_]来读取文件然后放进HttpEntity中。我们还提到:如果需要进行数据库数据交换的话,可以用Source[ROW,_]来表示库表行,但首先必须进行ROW -> ByteString的转换。在上期讨论我们提到过这种转换其实是ROW->Json->ByteString或者反方向的转换,在Akka-http里称之为Marshalling和Unmarshalling。Akka-http的Marshalling实现采用了type-class编程模式,需要为每一种类型与Json的转换在可视域内提供Marshaller[A,B]类型的隐式实例。Akka-http默认的Json工具库是Spray-Json,着重case class,而且要提供JsonFormat?(case-class),其中?代表case class的参数个数,用起来略显复杂。不过因为是Akka-http的配套库,在将来Akka-http的持续发展中具有一定的优势,所以我们还是用它来进行下面的示范。

下面就让我们开始写些代码吧。首先,我们用一个case class代表数据库表行结构,然后用它作为流元素来构建一个Source,如下:

  case class County(id: Int, name: String)
val source: Source[County, NotUsed] = Source( to ).map { i => County(i, s"中国广东省地区编号 #$i") }

我们先设计服务端的数据下载部分:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka.http.scaladsl.server.Directives._
import akka._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport trait MyFormats extends SprayJsonSupport with DefaultJsonProtocol
object Converters extends MyFormats {
case class County(id: Int, name: String)
val source: Source[County, NotUsed] = Source( to ).map { i => County(i, s"中国广东省地区编号 #$i") }
implicit val countyFormat = jsonFormat2(County)
} object HttpDBServer extends App {
import Converters._ implicit val httpSys = ActorSystem("httpSystem")
implicit val httpMat = ActorMaterializer()
implicit val httpEC = httpSys.dispatcher implicit val jsonStreamingSupport = EntityStreamingSupport.json()
.withParallelMarshalling(parallelism = , unordered = false) val route =
path("rows") {
get {
complete {
source
}
}
} val (port, host) = (,"localhost") val bindingFuture = Http().bindAndHandle(route,host,port) println(s"Server running at $host $port. Press any key to exit ...") scala.io.StdIn.readLine() bindingFuture.flatMap(_.unbind())
.onComplete(_ => httpSys.terminate()) }

在上面的代码里我们直接把source放进了complete(),然后期望这个directive能通过ToEntityMarshaller[County]类实例用Spray-Json把Source[County,NotUsed]转换成Source[ByteString,NotUsed]然后放入HttpResponse的HttpEntity里。转换结果只能在客户端得到证实。我们知道HttpResponse里的Entity.dataBytes就是一个Source[ByteString,_],我们可以把它Unmarshall成Source[County,_],然后用Akka-stream来操作:

     case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>
val futSource = Unmarshal(entity).to[Source[County,NotUsed]]
futSource.onSuccess {
case source => source.runForeach(println)
}

上面这个Unmarshal调用了下面这个FromEntityUnmarshaller[County]隐式实例:

  // support for as[Source[T, NotUsed]]
implicit def sprayJsonSourceReader[T](implicit reader: RootJsonReader[T], support: EntityStreamingSupport): FromEntityUnmarshaller[Source[T, NotUsed]] =
Unmarshaller.withMaterializer { implicit ec ⇒ implicit mat ⇒ e ⇒
if (support.supported.matches(e.contentType)) {
val frames = e.dataBytes.via(support.framingDecoder)
val unmarshal = sprayJsonByteStringUnmarshaller(reader)(_)
val unmarshallingFlow =
if (support.unordered) Flow[ByteString].mapAsyncUnordered(support.parallelism)(unmarshal)
else Flow[ByteString].mapAsync(support.parallelism)(unmarshal)
val elements = frames.viaMat(unmarshallingFlow)(Keep.right)
FastFuture.successful(elements)
} else FastFuture.failed(Unmarshaller.UnsupportedContentTypeException(support.supported))
}

这个隐式实例是由Spray-Jason提供的,在SprayJsonSupport.scala里。
下面是这部分客户端的完整代码:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka.http.scaladsl.model._
import scala.util._
import akka._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport
import akka.http.scaladsl.unmarshalling.Unmarshal trait MyFormats extends SprayJsonSupport with DefaultJsonProtocol
object Converters extends MyFormats {
case class County(id: Int, name: String)
implicit val countyFormat = jsonFormat2(County)
} object HttpDBClient extends App {
import Converters._ implicit val sys = ActorSystem("ClientSys")
implicit val mat = ActorMaterializer()
implicit val ec = sys.dispatcher implicit val jsonStreamingSupport: JsonEntityStreamingSupport = EntityStreamingSupport.json() def downloadRows(request: HttpRequest) = {
val futResp = Http(sys).singleRequest(request)
futResp
.andThen {
case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>
val futSource = Unmarshal(entity).to[Source[County,NotUsed]]
futSource.onSuccess {
case source => source.runForeach(println)
}
case Success(r@HttpResponse(code, _, _, _)) =>
println(s"download request failed, response code: $code")
r.discardEntityBytes()
case Success(_) => println("Unable to download rows!")
case Failure(err) => println(s"download failed: ${err.getMessage}") }
}
downloadRows(HttpRequest(HttpMethods.GET,uri = s"http://localhost:8011/rows")) scala.io.StdIn.readLine() sys.terminate() }

以上我们已经实现了客户端从服务端下载一段数据库表行,然后以Akka-stream的操作方式来处理下载数据。那么反向交换即从客户端上传一段表行的话就需要把一个Source[T,_]转换成Source[ByteString,_]然后放进HttpRequest的HttpEntity里。服务端收到数据后又要进行反向的转换即把Request.Entity.dataBytes从Source[ByteString,_]转回Source[T,_]。Akka-http在客户端没有提供像complete这样的强大的自动化功能。我们可能需要自定义并提供像ToRequestMarshaller[Source[T,_]]这样的隐式实例。但Akka-http的Marshalling-type-class是个非常复杂的系统。如果我们的目的是简单提供一个Source[ByteString,_],我们是否可以直接调用Spray-Json的函数来进行ROW->Son->ByteString转换呢?如下:

  import akka.util.ByteString
import akka.http.scaladsl.model.HttpEntity.limitableByteSource val source: Source[County,NotUsed] = Source( to ).map {i => County(i, s"广西壮族自治区地市县编号 #$i")}
def countyToByteString(c: County) = {
ByteString(c.toJson.toString)
}
val flowCountyToByteString : Flow[County,ByteString,NotUsed] = Flow.fromFunction(countyToByteString) val rowBytes = limitableByteSource(source via flowCountyToByteString) val request = HttpRequest(HttpMethods.POST,uri = s"http://localhost:8011/rows")
val data = HttpEntity(
ContentTypes.`application/json`,
rowBytes
) 我们直接用toJson函数进行County->Json转换实现了flowCountyToByteString。toJason是Spray-Json提供的一个函数:
package json { case class DeserializationException(msg: String, cause: Throwable = null, fieldNames: List[String] = Nil) extends RuntimeException(msg, cause)
class SerializationException(msg: String) extends RuntimeException(msg) private[json] class PimpedAny[T](any: T) {
def toJson(implicit writer: JsonWriter[T]): JsValue = writer.write(any)
} private[json] class PimpedString(string: String) {
@deprecated("deprecated in favor of parseJson", "1.2.6")
def asJson: JsValue = parseJson
def parseJson: JsValue = JsonParser(string)
}
}

假设服务端收到数据后以Akka-stream方式再转换成一个List返回,我们用下面的方法来测试功能:

  def uploadRows(request: HttpRequest, dataEntity: RequestEntity) = {
val futResp = Http(sys).singleRequest(
request.copy(entity = dataEntity)
)
futResp
.andThen {
case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>
entity.dataBytes.map(_.utf8String).runForeach(println)
case Success(r@HttpResponse(code, _, _, _)) =>
println(s"Upload request failed, response code: $code")
r.discardEntityBytes()
case Success(_) => println("Unable to Upload file!")
case Failure(err) => println(s"Upload failed: ${err.getMessage}") }
}

服务端接收数据处理方法如下:

     post {
withoutSizeLimit {
entity(asSourceOf[County]) { source =>
val futofNames: Future[List[String]] =
source.runFold(List[String](""))((acc, b) => acc ++ List(b.name))
complete {
futofNames
}
}
}
}

考虑到在数据转换的过程中可能会出现异常。需要异常处理方法来释放backpressure:

  def postExceptionHandler: ExceptionHandler =
ExceptionHandler {
case _: RuntimeException =>
extractRequest { req =>
req.discardEntityBytes()
complete((StatusCodes.InternalServerError.intValue,"Upload Failed!"))
}
} post {
withoutSizeLimit {
handleExceptions(postExceptionHandler) {
entity(asSourceOf[County]) { source =>
val futofNames: Future[List[String]] =
source.runFold(List[String](""))((acc, b) => acc ++ List(b.name))
complete {
futofNames
}
}
}
}
}

在客户端试运行返回结果显示:

  uploadRows(request,data)

["","广西壮族自治区地市县编号 #1","广西壮族自治区地市县编号 #2","广西壮族自治区地市县编号 #3","广西壮族自治区地市县编号 #4","广西壮族自治区地市县编号 #5"]

正是我们期待的结果。

下面是本次讨论的示范代码:

服务端:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport
import scala.concurrent._
import akka.http.scaladsl.server._
import akka.http.scaladsl.server.Directives._
import akka.http.scaladsl.model._ trait MyFormats extends SprayJsonSupport with DefaultJsonProtocol
object Converters extends MyFormats {
case class County(id: Int, name: String)
val source: Source[County, NotUsed] = Source( to ).map { i => County(i, s"中国广东省地区编号 #$i") }
implicit val countyFormat = jsonFormat2(County)
} object HttpDBServer extends App {
import Converters._ implicit val httpSys = ActorSystem("httpSystem")
implicit val httpMat = ActorMaterializer()
implicit val httpEC = httpSys.dispatcher implicit val jsonStreamingSupport = EntityStreamingSupport.json()
.withParallelMarshalling(parallelism = , unordered = false) def postExceptionHandler: ExceptionHandler =
ExceptionHandler {
case _: RuntimeException =>
extractRequest { req =>
req.discardEntityBytes()
complete((StatusCodes.InternalServerError.intValue,"Upload Failed!"))
}
} val route =
path("rows") {
get {
complete {
source
}
} ~
post {
withoutSizeLimit {
handleExceptions(postExceptionHandler) {
entity(asSourceOf[County]) { source =>
val futofNames: Future[List[String]] =
source.runFold(List[String](""))((acc, b) => acc ++ List(b.name))
complete {
futofNames
}
}
}
}
}
} val (port, host) = (,"localhost") val bindingFuture = Http().bindAndHandle(route,host,port) println(s"Server running at $host $port. Press any key to exit ...") scala.io.StdIn.readLine() bindingFuture.flatMap(_.unbind())
.onComplete(_ => httpSys.terminate()) }

客户端:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka.http.scaladsl.model._
import scala.util._
import akka._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport
import akka.http.scaladsl.unmarshalling._ trait MyFormats extends SprayJsonSupport with DefaultJsonProtocol
object Converters extends MyFormats {
case class County(id: Int, name: String)
implicit val countyFormat = jsonFormat2(County)
} object HttpDBClient extends App {
import Converters._ implicit val sys = ActorSystem("ClientSys")
implicit val mat = ActorMaterializer()
implicit val ec = sys.dispatcher implicit val jsonStreamingSupport: JsonEntityStreamingSupport = EntityStreamingSupport.json() def downloadRows(request: HttpRequest) = {
val futResp = Http(sys).singleRequest(request)
futResp
.andThen {
case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>
val futSource = Unmarshal(entity).to[Source[County,NotUsed]]
futSource.onSuccess {
case source => source.runForeach(println)
}
case Success(r@HttpResponse(code, _, _, _)) =>
println(s"download request failed, response code: $code")
r.discardEntityBytes()
case Success(_) => println("Unable to download rows!")
case Failure(err) => println(s"download failed: ${err.getMessage}") }
}
downloadRows(HttpRequest(HttpMethods.GET,uri = s"http://localhost:8011/rows")) import akka.util.ByteString
import akka.http.scaladsl.model.HttpEntity.limitableByteSource val source: Source[County,NotUsed] = Source( to ).map {i => County(i, s"广西壮族自治区地市县编号 #$i")}
def countyToByteString(c: County) = {
ByteString(c.toJson.toString)
}
val flowCountyToByteString : Flow[County,ByteString,NotUsed] = Flow.fromFunction(countyToByteString) val rowBytes = limitableByteSource(source via flowCountyToByteString) val request = HttpRequest(HttpMethods.POST,uri = s"http://localhost:8011/rows")
val data = HttpEntity(
ContentTypes.`application/json`,
rowBytes
) def uploadRows(request: HttpRequest, dataEntity: RequestEntity) = {
val futResp = Http(sys).singleRequest(
request.copy(entity = dataEntity)
)
futResp
.andThen {
case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>
entity.dataBytes.map(_.utf8String).runForeach(println)
case Success(r@HttpResponse(code, _, _, _)) =>
println(s"Upload request failed, response code: $code")
r.discardEntityBytes()
case Success(_) => println("Unable to Upload file!")
case Failure(err) => println(s"Upload failed: ${err.getMessage}") }
} uploadRows(request,data) scala.io.StdIn.readLine() sys.terminate() }

Akka(41): Http:DBTable-rows streaming - 数据库表行交换的更多相关文章

  1. mssql 数据库表行转列,列转行 比较经典

    --行列互转 /******************************************************************************************** ...

  2. restapi(2)- generic restful CRUD:通用的restful风格数据库表维护工具

    研究关于restapi的初衷是想搞一套通用的平台数据表维护http工具.前面谈过身份验证和使用权限.文件的上传下载,这次来到具体的数据库表维护.我们在这篇示范里设计一套通用的对平台每一个数据表的标准维 ...

  3. MS SQL查询所有表行数,获取所有数据库名,表名,字段名

    1.获取所有数据库名 --SELECT Name FROM Master..SysDatabases ORDER BY Name -- 2.获取所有表名: --SELECT Name NAMEtemp ...

  4. SAP中的数据库表索引

    数据库表中的索引可以加快查询的速度.索引是数据库表字段的有序副本.附加的字段包含指向真实数据库表行的指针.排序可以使访问表行的速度变快,例如,可以使用二分搜索.数据库表至少有一个主索引,由它的key字 ...

  5. 将Hive统计分析结果导入到MySQL数据库表中(一)——Sqoop导入方式

    https://blog.csdn.net/niityzu/article/details/45190787 交通流的数据分析,需求是对于海量的城市交通数据,需要使用MapReduce清洗后导入到HB ...

  6. 019-zabbix数据库表详解

    https://www.cnblogs.com/yaoyaojcy/p/10367945.html 1. 查看目前zabbix系统所有数据表: 1 2 3 4 5 6 7 8 9 10 11 12 1 ...

  7. C# 操作数据库表和数据库

    <1>c#创建数据库表: private void CreatTable(string name)      //创建数据库源数据表,name为表名 { con.ConnectionStr ...

  8. 《项目经验》--通过js获取前台数据向一般处理程序传递Json数据,并解析Json数据,将前台传来的Json数据写入数据库表中

      先看一下我要实现的功能界面:   这个界面的功能在图中已有展现,课程分配(教师教授哪门课程)在之前的页面中已做好.这个页面主要实现的是授课,即给老师教授的课程分配学生.此页面实现功能的步骤已在页面 ...

  9. asp.net 对数据库表增加,删除,编辑更新修改

    using System; using System.Collections.Generic; using System.Configuration; using System.Data; using ...

随机推荐

  1. SQL2008清空删除日志:

    SQL2008清空删除日志: '在SQL2008中清除日志就必须在简单模式下进行,等清除动作完毕再调回到完全模式. USE [master] GO ALTER DATABASE DNName SET ...

  2. JMeter 压力测试使用CSV参数

    表示之前从没用过JMeter所以记录一下使用过程 Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件做压力测试,它最初被设计用于Web应用测试,但后来扩展到其他测 ...

  3. 【推荐】地推统计结算工具SDK,手机开发首选

    地推是推广app的一种重要手段,同时地推结算对地推统计的精度的要求非常高,而openinstall就是一款符合要求的地推统计结算工具.它不仅多渠道统计能力强,安装设备识别精准,渠道统计精度高.还支持地 ...

  4. rewrite写法

    RewriteRule ^/android-special-(\d+).html$ /special/index.php?c=index&a=specialDetail&speid=$ ...

  5. Mayor's posters

    Mayor's posters Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  6. JavaScript系列-----对象基于哈希存储(<Key,Value>之Key篇) (1)

    1.Hash表的结构 首先,允许我们花一点时间来简单介绍hash表. 1.什么是hash表 hash表是一种二维结构,管理着一对对<Key,Value>这样的键值对,Hash表的结构如下图 ...

  7. js函数整合队列顺序执行插件

    前言 在日常开发中,也许我们会遇到这样的一个问题.我们利用[发布订阅模式](如果不了解的可以直接访问此链接www.cnblogs.com/xiaoxiaokun- )去执行[发布]事件时,遇到函数内部 ...

  8. JS事件流(W3C与IE区别)

    一.JS事件的3个阶段:捕获.目标.冒泡,低版本IE不支持捕获阶段: 二.在浏览器解析事件的时候,有两种触发方式:一种叫做Bubbling(冒泡),另外一种叫做Capturing(捕获). 冒泡的方式 ...

  9. 如何在C#中使用存储过程(SQL Server 2000)

    要在C#中使用存储过程,首先看看test表的创建sql语句:   create table test55 ( uid int identity(1,1), class1 varchar(20), cl ...

  10. override和重载的区别

    1.父类:public virtual string ToString(){return "a";}子类:public override string ToString(){ret ...