本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia

[SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉

题目大意

给定n,m,求在1到n!内与m!互质的个数,答案要对r取模。

输入格式:

第一行为两个整数T,R。R<=10^9+~~10,T<=10000,表示该组中测试数据数目,R为模 后面T行,每行一对整数n,m,见题目描述 m<=n

输出格式:

共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值

输入输出样例

input

1 11

4 2

output

1

解题分析

首先,我们来引出一个定理

如果a与b互质,那么\(b*k+a\)也与b互质。证明和证明gcd的证明类似。

反过来,我们也可以用\(gcd\)证明,

因为\(gcd(a,b)=1\),所以\(gcd(a\%b,b)=1\)

因为\(a\%b=a-k*b\),故\(gcd(a-k*b,b)=1\),及\(a-k*b\)与\(b\)互质。

根据这个特性,并且\(n>=m\),所以可以将n!分成若干段,每段为m!,每一段中与m!互质的个数都是相等的且等于1到m!中与m!互质的个数

我们可以得到式子

\(ans={\frac{n!}{m!}*\phi(m!)}\)

进一步拆开,我们可以得到 (假设p为m!的质因数,很容易可以知道,p就是所有小于m的素数,r为质因数个数)

\(ans={\frac{n!}{m!}*m!*\frac{\prod \limits_{i=1}^{r}(p_i-1)}{\prod\limits_{i=1}^{r}p_i } \to ans=n!*\frac{\prod \limits_{i=1}^{r}(p_i-1)}{\prod\limits_{i=1}^{r}p_i } }\)

因为\(ans\) 要\(\mod R\),所以我们也要算1到m的逆元,在累乘$\prod\limits_{i=1}^{r}p_i \(,乘的是\)p_i \(的逆元。
有多组询问,我们得先预处理一些数据,累乘的时候要%R
我们令\)k[i] = i! ,inv[i]为i的逆元,\(f1[i]= {\prod\limits_{a=1}^{i}(p_a-1)}\)

$ ,f2[i]={\prod\limits_{a=1}^{i}p_a} \(
\)ans=f1[m]f2[m]k[n]$

先预处理O()答案,对于询问O(1)出解

#include <cstdio>
#include <iostream>
#include <math.h>
using namespace std;
const int MAXN=10000000+10;
bool su[MAXN];
int q[MAXN][2],maxm,maxn,t,inv[MAXN],p,n,m;
int k[MAXN],f1[MAXN],f2[MAXN],ans=0;
void work()
{ inv[1]=1;k[1]=1;f1[1]=1;f2[1]=1;
for(int i=2;i<=sqrt(maxm);i++) if(!su[i])
for(int j=2;j<=maxm/i;j++) su[i*j]=1; for(int i=2;i<=maxn;i++)
{
if(i<=maxm)
{
inv[i]=(1LL*-(p/i)*inv[p%i])%p;
inv[i]=(inv[i]%p+p)%p;
}
if(i<=maxm)
{
if(!su[i])
{
f1[i]=(1LL*f1[i-1]*((i-1)%p))%p;
f2[i]=(1LL*f2[i-1]*(inv[i]%p))%p;
}else
{
f1[i]=f1[i-1];
f2[i]=f2[i-1];
}
}
k[i]=(1LL*k[i-1]*(i%p))%p;
}
}
int main()
{
scanf("%d%d",&t,&p); for(int i=1;i<=t;i++)
{
scanf("%d%d",&q[i][0],&q[i][1]);
maxn=max(maxn,q[i][0]);
maxm=max(maxm,q[i][1]);
}
work();
for(int i=1;i<=t;i++)
{
ans=((1LL*k[q[i][0]]%p)*1LL*(f1[q[i][1]]%p))%p;
ans=(ans*1LL*(f2[q[i][1]]%p))%p;
printf("%d\n",ans);
} return 0;
}
/*
2 11
6 3
10 5 */

[SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉的更多相关文章

  1. [SDOI2008]沙拉公主的困惑 线性筛_欧拉函数_逆元_快速幂

    Code: #include<cstdio> using namespace std; typedef long long ll; const int maxn=10000000+1; l ...

  2. 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数

    [BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...

  3. 洛谷 P3383 【模板】线性筛素数-线性筛素数(欧拉筛素数)O(n)基础题贴个板子备忘

    P3383 [模板]线性筛素数 题目描述 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) 输入输出格式 输入格式: 第一行包含两个正整数N.M,分别表示查询的范 ...

  4. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  5. BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...

  6. [洛谷P3383][模板]线性筛素数-欧拉筛法

    Description 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) Input&Output Input 第一行包含两个正整数N.M,分别表示查询的 ...

  7. P2158 [SDOI2008]仪仗队 线性筛(欧拉函数和素数表)

    上三角行恰好是[1,n-1]的欧拉函数 http://www.luogu.org/problem/show?pid=2158#sub //#pragma comment(linker, "/ ...

  8. 欧拉函数O(sqrt(n))与欧拉线性筛素数O(n)总结

    欧拉函数: 对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. POJ 2407.Relatives-欧拉函数 代码O(sqrt(n)): ll euler(ll n){ ll ans=n; ...

  9. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

随机推荐

  1. jabberNet 修改花名册条目的昵称

    修改昵称,这么简单的功能,在jabberNet里怎么实现? 翻遍了jabberNet里的代码,jabber.client.RosterManager也,JabberClient也,似乎都没有现成的方法 ...

  2. iOS-UIWebview比例缩放

    你在使用UIWebview显示网页时.可能会注意到.UIWebView所支持的缩放倍率是非常有限的.而在Safari自己所支持的缩放系数比UIWebview要大得多. 本文解释了怎样加大UIWebVi ...

  3. luogu1373 小a和uim之大逃离

    题目大意 地面上出现了一个n*m的巨幅矩阵,矩阵的每个格子上有一坨0~k不等量的魔液.怪物各给了小a和uim一个魔瓶,说道,你们可以从矩阵的任一个格子开始,每次向右或向下走一步,从任一个格子结束.开始 ...

  4. bzoj 1053 [ HAOI 2007 ] 反素数ant ——暴搜

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 试图打表找规律,但无果... 看TJ了,暴搜: 注意参数 w 是 long long. ...

  5. CPPCMS库在Windows下的使用

    标题:CPPCMS库在Windows下的使用时间:2012-7作者:Kagula 环境:[1]WinXP SP3[2]VisualStudio2008 SP1[3]ZLib 1.2.7[4]PCRE ...

  6. iOS手势识别

    一.手势识别与触摸事件 1.如果想监听一个view上面的触摸事件,可选的做法是: (1)自定义一个view (2)实现view的touches方法,在方法内部实现具体处理代码 2.通过touches方 ...

  7. 理解了这些词句涵义用法等,你就熟练ES6了。

    let const 块级作用于 暂时性死区 解构赋值:变量的解构赋值.对象的解构赋值.字符串的解构赋值.数值和布尔值的解构赋值. String的扩展 正则表达式的扩展 Number的扩展 Array的 ...

  8. Java 发送短信

    这是一个调用sms接口发短信的程序,支持同时发送的短信量并不是很大,只作为学习使用(当然如果你想内部使用也行) 源码:package com; import org.apache.commons.ht ...

  9. A - Infinite Sequence

    Problem description Consider the infinite sequence of integers: 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2,  ...

  10. C#开发微信公众号——网页开发之微信网页授权

    首先咱们先看下公众号的文档里面的介绍 上述图片的文字描述就是讲述了网页授权有什么用,就是为了获取微信用户的基本信息:授权回调域名的规范,说到域名回调的事情就不得不提一下设置网页授权域名 最好将这三个域 ...