Image Paragraph论文合辑
A Hierarchical Approach for Generating Descriptive Image Paragraphs (CPVR 2017) Li Fei-Fei.
数据集地址: http://cs.stanford.edu/people/ranjaykrishna/im2p/index.html

Workflow:
1.decompose the input image by detecting objects and other regions of interest
2.aggregate features across these regions to produce a pooled representation richly expressing the image semantics
3.take this feature vector as input by a hierarchical recurrent neural network composed of two levels: a sentence RNN and a word RNN.
4.sentence RNN receives the image features ,decides how many sentences to generate in the resulting paragraph, and produce an input topic vector for each sentence.
5.word RNN use this topic vector to generate the words of a single sentence.
Region Detector:
CNN+RPN
resize image-->pass through a CNN to get feature maps-->region proposal network(RPN) process the resulting feature maps-->regions of interest are projected onto the convolutional feature maps-->the corresponding region of the feature map is resized to a fixed size using bilinear interpolation and processed by two fully-connected layers to give a vector of dimension D for each region.
Given a dataset of images and ground-truth regions of interest, the region detector can be trained end-to-end fashion for object detection and for dense captioning.
Region Pooling:

elementwise maximum, Wpool and bpool are learned parameters, vi stands for a set of vectors produced by the region detector.
Hierarchical Recurrent Network:
Why Hierachical?
1.It reduces the length of time over which the recurrent networks must reason.
2.the generated paragraphs contain numbers of sentences, both the paragraph and sentence RNNs need only reason over much shorter time-scales, making learning an appropriate representation much more tractable
Sentence RNN: take the pooled region vector vp as input and produce a sequence of hidden states h1,h2,...,hS one for each sentence in the paragraph. Each hidden state used in two ways, produce a distributin pi to determine whether to stop and produce the topic vector ti for the i-th sentence of the paragraph ,which is the input of the word RNN.
Word RNN: the same as the LSTM components in the image captionings.
Training and Sampling:

training loss l(x,y) for the example (x,y) is a weighted sum of the two cross-entropy terms: a sentence loss lsent on the stopping distribution pi , and a word loss lword on the word distribution pij
Experiments:

Recurrent Topic-Transition GAN for Visual Paragraph Generation (ICCV 2017)
Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, Eric Xing
RTT-GAN


Towards Diverse and Natural Image Descriptions via a Conditional GAN (ICCV 2017)
Previous approaches, including both generation methods and evaluation metrics, primarily focus on the resemblance to the training samples.
Instead of emphasizing n-gram matching, we aim to improve the naturalness and diversity.
Generation.Under the MLE principle, the joint probability of a sentence is, to a large extent, determined by whether it contains the frequent n-grams from the training set.
When the generator yields a few of words that match the prefix of a frequent n-gram, the remaining words of that n-gram will likely be produced following the Markov chain.
Evaluation.Classical metrics include BLEU, and ROUGE, which respectively focuses on the precision and recall of n-grams. Beyond them, METEOR uses a combination of both the precison and the recall of n-grams. CIDEr uses weighted statistics over n-grams. As we can see, such metrics mostly rely on matching n-grams with the "groundtruths". As a result, sentences that contain frequent n-grams will get higher scores as compared to those using variant expressions. SPICE: Instead of matching between n-grams, it focues on those linguistic entities that reflect visual concepts (e.g. objects and relationships). However, other qualities, e.g. the naturalness of the expressions, are not considered in this metric.

The generator G takes two inputs: an image feature f(I) derived from a CNN and a ramdom vector z.
Diverse and Coherent Paragraph Generation from Images (ECCV 2018)
github: https://github.com/metro-smiles/CapG_RevG_Code
The authors propose to augment paragraph generation techniques with "coherence vectors," "global topic vectors," and modeling of the inherent ambiguity of associating paragraphs with images, via a variational auto-encoder formulation.

Topic Generation Net and Sentence Generation Net
Training for Diversity in Image Paragraph Captioning (EMNLP 2018)
github: https://github.com/lukemelas/image-paragraph-captioning
Image Paragraph论文合辑的更多相关文章
- Image Caption论文合辑2
说明: 这个合辑里面的论文不全是Image Caption, 但大多和Image Caption相关, 同时还有一些Workshop论文. Guiding Long-Short Term Memory ...
- Image Captioning 经典论文合辑
Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, y ...
- Medical Image Report论文合辑
Learning to Read Chest X-Rays:Recurrent Neural Cascade Model for Automated Image Annotation (CVPR 20 ...
- 【Tips】史上最全H1B问题合辑——保持H1B身份终级篇
[Tips]史上最全H1B问题合辑——保持H1B身份终级篇 2015-04-10留学小助手留学小助手 留学小助手 微信号 liuxue_xiaozhushou 功能介绍 提供最真实全面的留学干货,帮您 ...
- SSH三大框架合辑的搭建步骤
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...
- 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...
- 【OpenCV新手教程之十八】OpenCV仿射变换 & SURF特征点描写叙述合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨) ...
- 【OpenCV新手教程之十七】OpenCV重映射 & SURF特征点检測合辑
本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨) ...
- [OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...
随机推荐
- 1046: 找不到类型,或者它不是编译时常数: PieSeries
如题所看到的,出现提示,这个是绘图相关的错误:
- Ubuntu,右键->在终端中打开(apt-install,或者手动增加右键菜单)
方法一: sudo apt-get install nautilus-open-terminal 然后重启 方法二: Ubuntu中,默认右键菜单中没有“在终端中打开”.要想添加此菜单,可以在主目录中 ...
- .Net Core Socket 压力测试
原文:.Net Core Socket 压力测试 .Net Core Socket 压力测试 想起之前同事说go lang写的push service单机可以到达80万连接,于是就想测试下.Net C ...
- hdu 4644 BWT (kmp)
看完题目你非常easy想到,这个题目的关键点就是怎样把给出的数组还原成原数组. 还原的原数组之后无论是AC自己主动机 还是 kmp都能够解决 - -尽管我认为kmp会超时的感觉. 那么怎样还原这个字符 ...
- js进阶 10-10 可见伪类选择器和内容伪类选择器的作用
js进阶 10-10 可见伪类选择器和内容伪类选择器的作用 一.总结 一句话总结:分组来描述.内容伪类选择器就是 四个 包含.可见的伪类选择器就是可见和不可见.查找功能,也就是内容伪类选择器非常 ...
- 【dotnet跨平台】Asp.net 正在经历的变革
[dotnet跨平台]Asp.net 正在经历的变革 Asp.net 正在经历一场变革.从官网:https://get.asp.net/ 我们能够看到多个版本号的字眼例如以下: ASP.NET ...
- php课程 6-21 HTML标签相关函数
php课程 6-21 HTML标签相关函数 一.总结 一句话总结:1.存入数据库的html标签代码:$info=addslashes(htmlspecialchars($_POST['info'])) ...
- jar命令+7z:创建,替换,修改,删除Jar, war, ear包中的文件
虽然现在已经有各种智能的IDE可以为我们生成jar包,war包,ear包,甚至带上了自动替换,部署的功能.但一定会有那么些时候,你需要修改或是替换jar包,war包,ear包中的某个文件而不是整个重新 ...
- Database Vault注冊
默认情况下,在安装好Database Vault组件的Oracle HOme下创建的数据库是没有注冊Database Vault的. 1)停EM.监听.数据库 2)启用Database Vault 在 ...
- 51nod1673 树有几多愁 - 贪心策略 + 虚树 + 状压dp
传送门 题目大意: 给一颗重新编号,叶子节点的值定义为他到根节点编号的最小值,求所有叶子节点值的乘积的最大值. 题目分析: 为什么我觉得这道题最难的是贪心啊..首先要想到 在一条链上,深度大的编号要小 ...