Spark修炼之道(高级篇)——Spark源代码阅读:第十二节 Spark SQL 处理流程分析
作者:周志湖
以下的代码演示了通过Case Class进行表Schema定义的样例:
// sc is an existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._
// Define the schema using a case class.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface.
case class Person(name: String, age: Int)
// Create an RDD of Person objects and register it as a table.
val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable("people")
// SQL statements can be run by using the sql methods provided by sqlContext.
val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")
// The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by field index:
teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
// or by field name:
teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println)
// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println)
// Map("name" -> "Justin", "age" -> 19)
(1)sql方法返回DataFrame
def sql(sqlText: String): DataFrame = {
DataFrame(this, parseSql(sqlText))
}
当中parseSql(sqlText)方法生成对应的LogicalPlan得到,该方法源代码例如以下:
//依据传入的sql语句,生成LogicalPlan
protected[sql] def parseSql(sql: String): LogicalPlan = ddlParser.parse(sql, false)
ddlParser对象定义例如以下:
protected[sql] val sqlParser = new SparkSQLParser(getSQLDialect().parse(_))
protected[sql] val ddlParser = new DDLParser(sqlParser.parse(_))
(2)然后调用DataFrame的apply方法
private[sql] object DataFrame {
def apply(sqlContext: SQLContext, logicalPlan: LogicalPlan): DataFrame = {
new DataFrame(sqlContext, logicalPlan)
}
}
能够看到,apply方法參数有两个,各自是SQLContext和LogicalPlan,调用的是DataFrame的构造方法,详细源代码例如以下:
//DataFrame构造方法。该构造方法会自己主动对LogicalPlan进行分析,然后返回QueryExecution对象
def this(sqlContext: SQLContext, logicalPlan: LogicalPlan) = {
this(sqlContext, {
val qe = sqlContext.executePlan(logicalPlan)
//推断是否已经创建。假设是则抛异常
if (sqlContext.conf.dataFrameEagerAnalysis) {
qe.assertAnalyzed() // This should force analysis and throw errors if there are any
}
qe
})
}
(3)val qe = sqlContext.executePlan(logicalPlan) 返回QueryExecution, sqlContext.executePlan方法源代码例如以下:
protected[sql] def executePlan(plan: LogicalPlan) =
new sparkexecution.QueryExecution(this, plan)
QueryExecution类中表达了Spark运行SQL的主要工作流程,详细例如以下
class QueryExecution(val sqlContext: SQLContext, val logical: LogicalPlan) {
@VisibleForTesting
def assertAnalyzed(): Unit = sqlContext.analyzer.checkAnalysis(analyzed)
lazy val analyzed: LogicalPlan = sqlContext.analyzer.execute(logical)
lazy val withCachedData: LogicalPlan = {
assertAnalyzed()
sqlContext.cacheManager.useCachedData(analyzed)
}
lazy val optimizedPlan: LogicalPlan = sqlContext.optimizer.execute(withCachedData)
// TODO: Don't just pick the first one...
lazy val sparkPlan: SparkPlan = {
SparkPlan.currentContext.set(sqlContext)
sqlContext.planner.plan(optimizedPlan).next()
}
// executedPlan should not be used to initialize any SparkPlan. It should be
// only used for execution.
lazy val executedPlan: SparkPlan = sqlContext.prepareForExecution.execute(sparkPlan)
/** Internal version of the RDD. Avoids copies and has no schema */
//调用toRDD方法运行任务将结果转换为RDD
lazy val toRdd: RDD[InternalRow] = executedPlan.execute()
protected def stringOrError[A](f: => A): String =
try f.toString catch { case e: Throwable => e.toString }
def simpleString: String = {
s"""== Physical Plan ==
|${stringOrError(executedPlan)}
""".stripMargin.trim
}
override def toString: String = {
def output =
analyzed.output.map(o => s"${o.name}: ${o.dataType.simpleString}").mkString(", ")
s"""== Parsed Logical Plan ==
|${stringOrError(logical)}
|== Analyzed Logical Plan ==
|${stringOrError(output)}
|${stringOrError(analyzed)}
|== Optimized Logical Plan ==
|${stringOrError(optimizedPlan)}
|== Physical Plan ==
|${stringOrError(executedPlan)}
|Code Generation: ${stringOrError(executedPlan.codegenEnabled)}
""".stripMargin.trim
}
}
能够看到,SQL的运行流程为
1.Parsed Logical Plan:LogicalPlan
2.Analyzed Logical Plan:
lazy val analyzed: LogicalPlan = sqlContext.analyzer.execute(logical)
3.Optimized Logical Plan:lazy val optimizedPlan: LogicalPlan = sqlContext.optimizer.execute(withCachedData)
4. Physical Plan:lazy val executedPlan: SparkPlan = sqlContext.prepareForExecution.execute(sparkPlan)
能够调用results.queryExecution方法查看,代码例如以下:
scala> results.queryExecution
res1: org.apache.spark.sql.SQLContext#QueryExecution =
== Parsed Logical Plan ==
'Project [unresolvedalias('name)]
'UnresolvedRelation [people], None
== Analyzed Logical Plan ==
name: string
Project [name#0]
Subquery people
LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at createDataFrame at <console>:47
== Optimized Logical Plan ==
Project [name#0]
LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at createDataFrame at <console>:47
== Physical Plan ==
TungstenProject [name#0]
Scan PhysicalRDD[name#0,age#1]
Code Generation: true
(4) 然后调用DataFrame的主构造器完毕DataFrame的构造
class DataFrame private[sql](
@transient val sqlContext: SQLContext,
@DeveloperApi @transient val queryExecution: QueryExecution) extends Serializable
(5)
当调用DataFrame的collect等方法时,便会触发运行executedPlan
def collect(): Array[Row] = withNewExecutionId {
queryExecution.executedPlan.executeCollect()
}
比如:
scala> results.collect
res6: Array[org.apache.spark.sql.Row] = Array([Michael], [Andy], [Justin])
总体流程图例如以下:
Spark修炼之道(高级篇)——Spark源代码阅读:第十二节 Spark SQL 处理流程分析的更多相关文章
- Spark修炼之道——Spark学习路线、课程大纲
课程内容 Spark修炼之道(基础篇)--Linux基础(15讲).Akka分布式编程(8讲) Spark修炼之道(进阶篇)--Spark入门到精通(30讲) Spark修炼之道(实战篇)--Spar ...
- 【转】【技术博客】Spark性能优化指南——高级篇
http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236e ...
- Spark性能优化指南——高级篇
本文转载自:https://tech.meituan.com/spark-tuning-pro.html 美团技术点评团队) Spark性能优化指南——高级篇 李雪蕤 ·2016-05-12 14:4 ...
- Spark性能优化指南-高级篇(spark shuffle)
Spark性能优化指南-高级篇(spark shuffle) 非常好的讲解
- Spark修炼之道(进阶篇)——Spark入门到精通:第九节 Spark SQL执行流程解析
1.总体执行流程 使用下列代码对SparkSQL流程进行分析.让大家明确LogicalPlan的几种状态,理解SparkSQL总体执行流程 // sc is an existing SparkCont ...
- 【转载】Spark性能优化指南——高级篇
前言 数据倾斜调优 调优概述 数据倾斜发生时的现象 数据倾斜发生的原理 如何定位导致数据倾斜的代码 查看导致数据倾斜的key的数据分布情况 数据倾斜的解决方案 解决方案一:使用Hive ETL预处理数 ...
- Spark性能优化指南——高级篇(转载)
前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问 ...
- Spark性能优化指南-高级篇
转自https://tech.meituan.com/spark-tuning-pro.html,感谢原作者的贡献 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作 ...
- Spark性能调优-高级篇
前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问 ...
随机推荐
- FCC高级编程篇之Record Collection
Record Collection You are given a JSON object representing a part of your musical album collection. ...
- while循环,格式化输出%,运算符,数据类型的转换,编码的初识,
1.内容总览 while循环 格式化输出 运算符 and or not 编码的初识 2. 具体内容 while 循环 where:程序中:你需要重复之前的动作,输入用户名密码时,考虑到while循环. ...
- (2016北京集训十三)【xsy1532】网络战争 - 最小割树+树上倍增+KD树
题解: 好题!! 这题似乎能上我代码长度记录的前五? 调试时间长度应该也能上前五QAQ 首先题目要求的明显就是最小割,当然在整个森林上求Q次最小割肯定是会GG的,所以我们需要一个能快速求最小割的算法— ...
- C#之改变窗体icon图标、新建类文件、调用dll库
一.改变窗体的图标 没有修改之前为: 修改之后为自己想要的图标: 需要在窗体Form1.cs属性里边添加icon图片文件: 二.新建cs类文件 如下图所示,新建一个类文件,我用于来调用库文件也可以来定 ...
- LaTeX 表格
本系列文章由 @YhL_Leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50066137 一些LaTeX中表格的使 ...
- mysql死锁-查询锁表进程-分析锁表原因
查询锁表进程: 1.查询是否锁表 show OPEN TABLES where In_use > 0; 2.查询进程 show processlist 查询到相对应的进程===然 ...
- 洛谷——P1455 搭配购买
https://www.luogu.org/problem/show?pid=1455 题目描述 明天就是母亲节了,电脑组的小朋友们在忙碌的课业之余挖空心思想着该送什么礼物来表达自己的心意呢?听说在某 ...
- Codeforces Round #271 (Div. 2) 解题报告
题目地址:http://codeforces.com/contest/474 A题:Keyboard 模拟水题. 代码例如以下: #include <iostream> #include ...
- [转]GLTF-3D图形界的JPEG
GLTF简介 1.glTF(GL TransmissionFormat),即图形语言交换格式,它是一种3D内容的格式标准,由Khronos Group管理(Khronos Group还管理着OpenG ...
- 设置linux session 编码
设置linux session 编码 export LANG=zh_CN.utf-8