解方程 sqrt(x-sqrt(n))+sqrt(y)-sqrt(z)=0的所有自然数解
解方程
小象同学在初等教育时期遇到了一个复杂的数学题,题目是这样的:
给定自然数 nn,确定关于 x, y, zx,y,z 的不定方程 \displaystyle \sqrt{x - \sqrt{n}} + \sqrt{y} - \sqrt{z} =0x−n+y−z=0 的所有自然数解。
当时的小象同学并不会做这道题。多年后,经过高等教育的洗礼,小象同学发现这道题其实很简单。小象同学认为你一定也会做这道题,所以把这道题留给了你。为了便于输出,你不需要输出每一组解 (x, y, z)(x,y,z),你只需要给出解的数量和所有解的 x y zxyz 之和对 (10^9+7)(109+7) 取模的值即可。注意,解的数量不对 (10^9+7)(109+7) 取模。
输入描述
输入包含多组测试数据。输入的第一行包含一个正整数 TT (1 \leq T \leq10^41≤T≤104),表示测试数据的组数。接下来依次描述每组测试数据,对于每组测试数据:
仅一行,包含一个非负整数 nn (0 \leq n \leq 2 \times 10^90≤n≤2×109),含义如题面所示。
输出描述
对于每组数据,输出一行。若方程有无穷多组自然数解,则在这一行输出 \text{``infty''}“infty”(不含引号),否则在这一行输出两个整数,其中第一个整数表示方程的解数,第二个整数表示所有解的 x y zxyz 之和对 (10^9+7)(109+7) 取模的值,这两个整数之间用恰好一个空格隔开,行末不要有多余的空格。
样例输入 1
3
6
12
24
样例输出 1
0 0
1 12
2 72
提示
当 n = 12n=12 时,方程唯一的解为 x = 4x=4, y = 1y=1, z = 3z=3。
当 n = 24n=24 时,方程的两组解为 x = 5x=5, y = 2y=2, z = 3z=3 和 x = 7x=7, y = 1y=1, z = 6z=6。
可以通过化简(移项,平方)得到 x=z+y,n=4zy
无解就是不为整数
但是什么时候存在无穷解呢,x=sqrt(n),y,z就可以无限取了,其实就是完全平方数
注意下sqrt向下取整的细节,然后把自己代码常数写的小一点就可以了
关于强制转换,只要有一个是位数更多的,得到的就是位数更多的,然后注意不要溢出就好了
#include<bits/stdc++.h>
using namespace std;
const int MD=1e9+;
int main()
{
int T,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int x=sqrt(n+0.5);
if(x*x==n)printf("infty\n");
else if(n%) printf("0 0\n");
else
{
n/=;
int y=sqrt(n+0.5);
int num=,ans=;
for(int i=;i<=y;i++)
if(n%i==) ans=(ans+1LL*n*(i+n/i))%MD,num++;
printf("%d %d\n",num,ans);
}
}
return ;
}
积性函数解法,51nod1220请,这个还不会

解方程 sqrt(x-sqrt(n))+sqrt(y)-sqrt(z)=0的所有自然数解的更多相关文章
- Maya 2012 破解安装全图文教程
在学习U3D的过程中.我们要用到Maya这个工具,(当然你也能够用其它类似的), 我在安装破解 Maya 2012 的过程其中,走了一些弯路.通过搜索发现,网上关于Maya 破解的文章大多语焉不详,为 ...
- Comet OJ - Contest #0 A题 解方程 (数学)
题目描述 小象同学在初等教育时期遇到了一个复杂的数学题,题目是这样的: 给定自然数 nn,确定关于 x, y, zx,y,z 的不定方程 \displaystyle \sqrt{x - \sqrt{n ...
- HDU 4793 Collision --解方程
题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,v ...
- 洛谷 题解 P2312 【解方程】
Problem P2312 [解方程] >>> record 用时: 1166ms 空间: 780KB(0.76MB) 代码长度: 2.95KB 提交记录: R9909587 > ...
- Ural 1046 Geometrical Dreams(解方程+计算几何)
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...
- 5.5Python数据处理篇之Sympy系列(五)---解方程
目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-n ...
- python 解方程
[怪毛匠子=整理] SymPy 库 安装 sudo pip install sympy x = Symbol('x') 解方程 solve([2 * x - y - 3, 3 * x + y - 7] ...
- HDU 5974 A Simple Math Problem (解方程)
题意:给定a和b,求一组满足x+y=a && lcm(x, y)=b. 析:x+y = a, lcm(x, y) = b,=>x + y = a, x * y = b * k,其 ...
- 【HDOJ5974】A Simple Math Problem(构造,解方程)
题意:给定A与B,要求构造出一组X,Y,使得X+Y=A,lcm(X,Y)=B A<=2e4,B<=1e9 思路:A的范围较小,考虑以A为突破口 枚举A的约数k,复杂度O(sqrt(A)) ...
随机推荐
- 20145238-荆玉茗 《Java程序设计》第一周学习总结
20145238 <Java程序设计>第一周学习总结 教材学习内容总结 Java三大平台:由于java领域的应用越来越广,根据不同级别的应用开发区分了不同的应用版本,后正式更名为Java ...
- Linux查看CPU和内存使用情况[转]
在系统维护的过程中,随时可能有需要查看 CPU 使用率,并根据相应信息分析系统状况的需要.在 CentOS 中,可以通过 top 命令来查看 CPU 使用状况.运行 top 命令后,CPU 使用状态会 ...
- java基础必备单词讲解 day five
Rectangle width high height area employee tool param version author math guess resources 之前单词复习 path ...
- 转载:字符串HASH
转载自:Slager_Z 字符串Hash总结 Hash是什么意思呢?某度翻译告诉我们: hash 英[hæʃ] 美[hæʃ]n. 剁碎的食物; #号; 蔬菜肉丁;vt. 把…弄乱; 切碎; 反复推敲; ...
- yum 仓库配置
[base]name=aliyum basebaseurl=https://mirrors.aliyun.com/centos/6/os/x86_64/ ...
- MySQL视图、事务
view(视图):虚拟表主要用来看(查)数据基表的数据变化会在视图中体现出来 权限控制将多表查询的结果整合在视图中方便用户查看 create view v1 as select ...查询语句WITH ...
- 还在使用pdf、word简历?简单五步实现github托管个人逼格简历
写在前面: 什么是git.github? git 版本控制工具 github 通过git工具做的版本控制的项目托管平台 项目开发肯定不止一个程序猿,多个程序猿针对同一个文件进行代码读写操作时,是先保存 ...
- Eloquent: 修改器
感觉好长时间没写东西了,一方面主要是自己的角色发生了变化,每天要面对各种各样的事情和突发事件,不能再有一个完整的长时间让自己静下来写代码,或者写文章. 另一方面现在公司技术栈不再停留在只有 Larav ...
- JZOJ 1738. Heatwave
Description 给你N个点的无向连通图,图中有M条边,第j条边的长度为: d_j. 现在有 K个询问. 每个询问的格式是:A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少? I ...
- 【机器学习算法基础+实战系列】SVM
概述 支持向量机是一种二分类模型,间隔最大使它有别于感知机.支持向量机学习方法由简至繁的模型:线性可分支持向量机(linear support vector machine in linearly s ...