以lstm+ctc对汉字识别为例对tensorflow 中的lstm,ctc loss的调试
#-*-coding:utf8-*- __author = "buyizhiyou"
__date = "2017-11-21" '''
单步调试,结合汉字的识别学习lstm,ctc loss的tf实现,tensorflow1.4
'''
import tensorflow as tf
import numpy as np
import pdb
import random def create_sparse(batch_size, dtype=np.int32):
'''
创建稀疏张量,ctc_loss中labels要求是稀疏张量,随机生成序列长度在150~180之间的labels
'''
indices = []
values = []
for i in range(batch_size):
length = random.randint(150,180)
for j in range(length):
indices.append((i,j))
value = random.randint(0,779)
values.append(value) indices = np.asarray(indices, dtype=np.int64)
values = np.asarray(values, dtype=dtype)
shape = np.asarray([batch_size, np.asarray(indices).max(0)[1] + 1], dtype=np.int64) #[64,180] return [indices, values, shape] W = tf.Variable(tf.truncated_normal([200,781],stddev=0.1), name="W")#num_hidden=200,num_classes=781(想象成780个汉字+blank),shape (200,781)
b = tf.Variable(tf.constant(0., shape=[781]), name="b")#
global_step = tf.Variable(0, trainable=False)#全局步骤计数 #构造输入
inputs = tf.random_normal(shape=[64,60,3000], dtype=tf.float32)#为了测试,随机batch_size=64张图片,h=60,w=3000,w可以看成lstm的时间步,即lstm输入的time_step=3000,h看成是每一时间步的输入tensor的size
shape = tf.shape(inputs)#array([ 64, 3000, 60], dtype=int32)
batch_s, max_timesteps = shape[0], shape[1] #64,3000
output = create_sparse(64)#创建64张图片对应的labels,稀疏张量,序列长度变长
seq_len = np.ones(64)*180 #180为变长序列的最大值
labels = tf.SparseTensor(values=output[1],indices=output[0],dense_shape=output[2]) pdb.set_trace()
cell = tf.nn.rnn_cell.LSTMCell(200, state_is_tuple=True)
inputs = tf.transpose(inputs,[0,2,1])#转置,因为默认的tf.nn.dynamic_rnn中参数time_major=false,即inputs的shape 是`[batch_size, max_time, ...]`, '''
tf.nn.dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, paralle
l_iterations=None, swap_memory=False, time_major=False, scope=None)
'''
outputs1, _ = tf.nn.dynamic_rnn(cell, inputs, seq_len, dtype=tf.float32)#(64, 3000, 200)动态rnn实现了输入变长问题的解决方案http://blog.csdn.net/u010223750/article/details/71079036 outputs = tf.reshape(outputs1, [-1, 200])#(64×3000,200)
logits0 = tf.matmul(outputs, W) + b
logits1 = tf.reshape(logits0, [batch_s, -1, 781])
logits = tf.transpose(logits1, (1, 0, 2))#(3000, 64, 781) '''
tf.nn.ctc_loss(labels, inputs, sequence_length, preprocess_collapse_repeated=False, ctc_merge
_repeated=True, ignore_longer_outputs_than_inputs=False, time_major=True)
'''
loss = tf.nn.ctc_loss(logits, labels, seq_len)#关于ctc loss解决rnn输出和序列不对齐问题
#http://blog.csdn.net/left_think/article/details/76370453
#https://zhuanlan.zhihu.com/p/23293860
cost = tf.reduce_mean(loss)
optimizer = tf.train.MomentumOptimizer(learning_rate=0.01,
momentum=0.9).minimize(cost, global_step=global_step)
#decoded, log_prob = tf.nn.ctc_beam_search_decoder(logits, seq_len, merge_repeated=False)#or "tf.nn.ctc_greedy_decoder"一种解码策略
#acc = tf.reduce_mean(tf.edit_distance(tf.cast(decoded[0], tf.int32), labels))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print (outputs.get_shape())
print (sess.run(loss))
以lstm+ctc对汉字识别为例对tensorflow 中的lstm,ctc loss的调试的更多相关文章
- 在TensorFlow中基于lstm构建分词系统笔记
在TensorFlow中基于lstm构建分词系统笔记(一) https://www.jianshu.com/p/ccb805b9f014 前言 我打算基于lstm构建一个分词系统,通过这个例子来学习下 ...
- tensorflow中的lstm的state
考虑 state_is_tuple Output, new_state = cell(input, state) state其实是两个 一个 c state,一个m(对应下图的 ...
- tensorflow源码分析——CTC
CTC是2006年的论文Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurren ...
- Python中利用LSTM模型进行时间序列预测分析
时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺 ...
- tensorflow实现基于LSTM的文本分类方法
tensorflow实现基于LSTM的文本分类方法 作者:u010223750 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实 ...
- 一文详解如何用 TensorFlow 实现基于 LSTM 的文本分类(附源码)
雷锋网按:本文作者陆池,原文载于作者个人博客,雷锋网已获授权. 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用 ...
- 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识
用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如 ...
- 在Keras中可视化LSTM
作者|Praneet Bomma 编译|VK 来源|https://towardsdatascience.com/visualising-lstm-activations-in-keras-b5020 ...
- LSTM(长短期记忆网络)及其tensorflow代码应用
本文主要包括: 一.什么是LSTM 二.LSTM的曲线拟合 三.LSTM的分类问题 四.为什么LSTM有助于消除梯度消失 一.什么是LSTM Long Short Term 网络即为LSTM,是一种 ...
随机推荐
- vue-router中scrollBehavior的巧妙用法
问题:使用keep-alive标签后部分安卓机返回缓存页位置不精确问题 解决方案: <div id="app"> <keep-alive> <rout ...
- 公路建设 (highway.c/cpp/pas)
2.公路建设 (highway.c/cpp/pas) 在滨海市一共有 n 个城市,编号依次为 1 到 n,它们之间计划修建 m 条双向道路,其中 修建第 i 条道路的费用为 ci. 海霸王作为滨海市公 ...
- Linux中权限(r、w、x)对于目录与文件的意义
Linux中权限(r.w.x)对于目录与文件的意义 一.权限对于目录的意义 1.首先要明白的是目录主要的内容是记录文件名列表和子目录列表,而不是实际存放数据的地方. 2.r权限:拥有此权限表示可以读取 ...
- HDU5307 He is Flying
JRY wants to drag racing along a long road. There are nn sections on the road, the ii-th section has ...
- cookie登录
#coding:utf-8 import tornado.httpserver import tornado.ioloop import tornado.options import tornado. ...
- Linux之epoll详细解析实现
/* * fs/eventpoll.c (Efficient event retrieval implementation) * Copyright (C) 2001,...,2009 Davide ...
- python--jinja2
from jinja2 import Template # 创建一个Template模板去渲染它 s = "my name is {{mashiro}}" t = Template ...
- Appium+python自动化7-输入中文【转载】
前言 在做app自动化过程中会踩很多坑,咱们都是用的中文的app,所以首先要解决中文输入的问题! 本篇通过屏蔽软键盘,绕过手机的软键盘方法,解决中文输入问题. 一.定位搜索 1.打开淘宝点搜索按钮,进 ...
- javaweb核心技术servlet
一.Servlet简介 1.什么是Servlet Servlet 运行在服务端的Java小程序,是sun公司提供一套规范(接口),用来处理客户端请求.响应给浏览器的动态资源.但servlet的实质 ...
- mysql故障(主从复制sql线程不运行)
故障现象: 进入slave服务器,运行: mysql> show slave status\G ....... Relay_Log_File: localhost Relay_Log_Pos: ...