【ACM】Knapsack without repetition - 01背包问题
无界背包中的状态及状态方程已经不适用于01背包问题,那么我们来比较这两个问题的不同之处,无界背包问题中同一物品可以使用多次,而01背包问题中一个背包仅可使用一次,区别就在这里。我们将 K(ω)改为 K(i,ω) 即可,新的状态表示前 i 件物品放入一个容量为 ω的背包可以获得的最大价值。
现在从以上状态定义出发寻找相应的状态转移方程。K(i−1,ω)为 K(i,ω)的子问题,如果不放第 i 件物品,那么问题即转化为「前 i−1 件物品放入容量为 ω 的背包」,此时背包内获得的总价值为 K(i−1,ω);如果放入第 i 件物品,那么问题即转化为「前 i−1 件物品放入容量为 ω−ωi 的背包」,此时背包内获得的总价值为 K(i−1,ω−ωi)+vi. 新的状态转移方程用数学语言来表述即为:K(i,ω)=max{K(i−1,ω),K(i−1,ω−ωi)+vi}
这里的分析是以容量递推的,但是在容量特别大时,我们可能需要以价值作为转移方程。定义状态dp[i + 1][j]为前i个物品中挑选出价值总和为j 时总重量的最小值(所以对于不满足条件的索引应该用充分大的值而不是最大值替代,防止溢出)。相应的转移方程为:前i - 1 个物品价值为j, 要么为j - v[i](选中第i个物品). 即dp[i + 1][j] = min{dp[i][j], dp[i][j - v[i]] + w[i]}. 最终返回结果为dp[n][j] ≤ W 中最大的 j.
以上我们只是求得了最终的最大获利,假如还需要输出选择了哪些项如何破?
以普通的01背包为例,如果某元素被选中,那么其必然满足w[i] > j且大于之前的dp[i][j], 这还只是充分条件,因为有可能被后面的元素代替。保险起见,我们需要跟踪所有可能满足条件的项,然后反向计算有可能满足条件的元素,有可能最终输出不止一项。
import java.util.*;
public class Backpack {
// 01 backpack with small datasets(O(nW), W is small)
public static int backpack(int W, int[] w, int[] v, boolean[] itemTake) {
int N = w.length;
int[][] dp = new int[N + 1][W + 1];
boolean[][] matrix = new boolean[N + 1][W + 1];
for (int i = 0; i < N; i++) {
for (int j = 0; j <= W; j++) {
if (w[i] > j) {
// backpack cannot hold w[i]
dp[i + 1][j] = dp[i][j];
} else {
dp[i + 1][j] = Math.max(dp[i][j], dp[i][j - w[i]] + v[i]);
// pick item i and get value j
matrix[i][j] = (dp[i][j - w[i]] + v[i] > dp[i][j]);
}
}
}
// determine which items to take
for (int i = N - 1, j = W; i >= 0; i--) {
if (matrix[i][j]) {
itemTake[i] = true;
j -= w[i];
} else {
itemTake[i] = false;
}
}
return dp[N][W];
}
// 01 backpack with big datasets(O(n\sigma{v}), W is very big)
public static int backpack2(int W, int[] w, int[] v) {
int N = w.length;
// sum of value array
int V = 0;
for (int i : v) {
V += i;
}
// initialize
int[][] dp = new int[N + 1][V + 1];
for (int[] i : dp) {
// should avoid overflow for dp[i][j - v[i]] + w[i]
Arrays.fill(i, Integer.MAX_VALUE >> 1);
}
dp[0][0] = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j <= V; j++) {
if (v[i] > j) {
// value[i] > j
dp[i + 1][j] = dp[i][j];
} else {
// should avoid overflow for dp[i][j - v[i]] + w[i]
dp[i + 1][j] = Math.min(dp[i][j], dp[i][j - v[i]] + w[i]);
}
}
}
// search for the largest i dp[N][i] <= W
for (int i = V; i >= 0; i--) {
// if (dp[N][i] <= W) return i;
if (dp[N][i] <= W) return i;
}
return 0;
}
// repeated backpack
public static int backpack3(int W, int[] w, int[] v) {
int N = w.length;
int[][] dp = new int[N + 1][W + 1];
for (int i = 0; i < N; i++) {
for (int j = 0; j <= W; j++) {
if (w[i] > j) {
// backpack cannot hold w[i]
dp[i + 1][j] = dp[i][j];
} else {
dp[i + 1][j] = Math.max(dp[i][j], dp[i + 1][j - w[i]] + v[i]);
}
}
}
return dp[N][W];
}
public static void main(String[] args) {
int[] w1 = new int[]{2, 1, 3, 2};
int[] v1 = new int[]{3, 2, 4, 2};
int W1 = 5;
boolean[] itemTake = new boolean[w1.length + 1];
System.out.println("Testcase for 01 backpack.");
int bp1 = backpack(W1, w1, v1, itemTake); // bp1 should be 7
System.out.println("Maximum value: " + bp1);
for (int i = 0; i < itemTake.length; i++) {
if (itemTake[i]) {
System.out.println("item " + i + ", weight " + w1[i] + ", value " + v1[i]);
}
}
System.out.println("Testcase for 01 backpack with large W.");
int bp2 = backpack2(W1, w1, v1); // bp2 should be 7
System.out.println("Maximum value: " + bp2);
int[] w3 = new int[]{3, 4, 2};
int[] v3 = new int[]{4, 5, 3};
int W3 = 7;
System.out.println("Testcase for repeated backpack.");
int bp3 = backpack3(W3, w3, v3); // bp3 should be 10
System.out.println("Maximum value: " + bp3);
}
}
【ACM】Knapsack without repetition - 01背包问题的更多相关文章
- 【ACM】拦截导弹 - 0-1背包问题
拦截导弹 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 某国为了防御敌国的导弹袭击,发展中一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到 ...
- ACM:动态规划,01背包问题
题目: 有n件物品和一个容量为C的背包.(每种物品均仅仅有一件)第i件物品的体积是v[i],重量是w[i].选一些物品装到这个背包中,使得背包内物品在整体积不超过C的前提下重量尽量大. 解法:两种思路 ...
- 动态规划法(四)0-1背包问题(0-1 Knapsack Problem)
继续讲故事~~ 转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了.这天晚上,妈妈正在耐心地帮丁丁收拾行李.家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编 ...
- 【优化算法】变邻域搜索算法解决0-1背包问题(Knapsack Problem)代码实例 已
01 前言 经过小编这几天冒着挂科的风险,日日修炼,终于赶在考试周中又给大家更新了一篇干货文章.关于用变邻域搜索解决0-1背包问题的代码.怎样,大家有没有很感动? 02 什么是0-1背包问题? 0-1 ...
- 0-1背包问题(0-1 knapsack problem)
0-1背包问题描述:一个正在抢劫商店的小偷发现了n个商品,第i个商品价值 vi 美元,重 wi 磅,vi 和 wi 都是整数.这个小偷希望拿走价值尽量高的商品,但他的背包最多能容纳 S 磅重的商品,S ...
- HDOJ 2546饭卡(01背包问题)
http://acm.hdu.edu.cn/showproblem.php?pid=2546 Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如 ...
- hdu5188 加限制的01背包问题
http://acm.hdu.edu.cn/showproblem.php? pid=5188 Problem Description As one of the most powerful brus ...
- 01背包问题(Java实现)
关于背包问题,百度文库上有崔添翼大神的<背包九讲>,不明的请移步查看.这里仅介绍最基本的01背包问题的实现. public class Knapsack { private final i ...
- HDU 2602 Bone Collector(经典01背包问题)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2602 Bone Collector Time Limit: 2000/1000 MS (Java/O ...
随机推荐
- 转:c语言学习笔记 二进制和十进制的互相转化
http://www.cnblogs.com/xkfz007/articles/2590472.html
- Entity Framework Tutorial Basics(3):Entity Framework Architecture
Entity Framework Architecture The following figure shows the overall architecture of the Entity Fram ...
- 《Maven实战》笔记-9-版本管理
一.理想的发布版本,在项目构建时需要满足以下条件: 1.所有自动化测试应当全部通过: 2.项目没有配置任何快照版本的依赖: 3.项目没有任何快照版本的插件: 4.项目所包含的代码已经全部提交到版本控制 ...
- 单击GridView控件,高亮单击所在的记录行
看过下面博文的网友,也许都会觉得有点遗憾,就是很难知道自己点击的是哪一记录行.http://www.cnblogs.com/insus/p/3211017.html 针对这个问题Insus.NET再对 ...
- InnoDB记录压缩及使用分析
此文已由作者温正湖授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 这篇文章,源于RDS组内的一次饭后闲聊,两位小伙伴在探讨InnoDB启用压缩后的种种,比如在磁盘上是怎么存放 ...
- 第一个HelloWorld!
$.介绍 1.eclipse的基本使用 2.第一个程序HelloWorld 3.总结 $.基本使用 对于刚入门的java新手来说选择一个舒适的编译器能让你快速的上手java的程序编写. 针对英语low ...
- gRPC官方文档(概念)
文章来自gRPC 官方文档中文版 gRPC 概念 本文档通过对于 gRPC 的架构和 RPC 生命周期的概览来介绍 gRPC 的主要概念.本文是在假设你已经读过文档部分的前提下展开的.针对具体语言细节 ...
- Binder学习笔记(八)—— 客户端如何组织Test()请求 ?
还从客户端代码看起TestClient.cpp:14 int main() { sp < IServiceManager > sm = defaultServiceManager(); / ...
- A Plug for UNIX UVA - 753(网络流)
题意:n个插座,m个设备及其插头类型,k种转换器,没有转换器的情况下插头只能插到类型名称相同的插座中,问最少剩几个不匹配的设备 lrj紫书里面讲得挺好的. 先跑一遍floyd,看看插头类型a能否转换为 ...
- Oracle PL/SQL编程语法
--plsql块结构,计算a,b的和 declare a ; b ; c int; begin c:=a+b; dbms_output.put_line(c); end; --%type数据类型,输出 ...