无界背包中的状态及状态方程已经不适用于01背包问题,那么我们来比较这两个问题的不同之处,无界背包问题中同一物品可以使用多次,而01背包问题中一个背包仅可使用一次,区别就在这里。我们将 K(ω)改为 K(i,ω) 即可,新的状态表示前 i 件物品放入一个容量为 ω的背包可以获得的最大价值。

现在从以上状态定义出发寻找相应的状态转移方程。K(i−1,ω)为 K(i,ω)的子问题,如果不放第 i 件物品,那么问题即转化为「前 i−1 件物品放入容量为 ω 的背包」,此时背包内获得的总价值为 K(i−1,ω);如果放入第 i 件物品,那么问题即转化为「前 i−1 件物品放入容量为 ω−ωi 的背包」,此时背包内获得的总价值为 K(i−1,ω−ωi)+vi. 新的状态转移方程用数学语言来表述即为:K(i,ω)=max{K(i−1,ω),K(i−1,ω−ωi)+vi}

这里的分析是以容量递推的,但是在容量特别大时,我们可能需要以价值作为转移方程。定义状态dp[i + 1][j]为前i个物品中挑选出价值总和为j 时总重量的最小值(所以对于不满足条件的索引应该用充分大的值而不是最大值替代,防止溢出)。相应的转移方程为:前i - 1 个物品价值为j, 要么为j - v[i](选中第i个物品). 即dp[i + 1][j] = min{dp[i][j], dp[i][j - v[i]] + w[i]}. 最终返回结果为dp[n][j] ≤ W 中最大的 j.

以上我们只是求得了最终的最大获利,假如还需要输出选择了哪些项如何破?

以普通的01背包为例,如果某元素被选中,那么其必然满足w[i] > j且大于之前的dp[i][j], 这还只是充分条件,因为有可能被后面的元素代替。保险起见,我们需要跟踪所有可能满足条件的项,然后反向计算有可能满足条件的元素,有可能最终输出不止一项。

import java.util.*;

public class Backpack {
// 01 backpack with small datasets(O(nW), W is small)
public static int backpack(int W, int[] w, int[] v, boolean[] itemTake) {
int N = w.length;
int[][] dp = new int[N + 1][W + 1];
boolean[][] matrix = new boolean[N + 1][W + 1];
for (int i = 0; i < N; i++) {
for (int j = 0; j <= W; j++) {
if (w[i] > j) {
// backpack cannot hold w[i]
dp[i + 1][j] = dp[i][j];
} else {
dp[i + 1][j] = Math.max(dp[i][j], dp[i][j - w[i]] + v[i]);
// pick item i and get value j
matrix[i][j] = (dp[i][j - w[i]] + v[i] > dp[i][j]);
}
}
} // determine which items to take
for (int i = N - 1, j = W; i >= 0; i--) {
if (matrix[i][j]) {
itemTake[i] = true;
j -= w[i];
} else {
itemTake[i] = false;
}
} return dp[N][W];
} // 01 backpack with big datasets(O(n\sigma{v}), W is very big)
public static int backpack2(int W, int[] w, int[] v) {
int N = w.length;
// sum of value array
int V = 0;
for (int i : v) {
V += i;
}
// initialize
int[][] dp = new int[N + 1][V + 1];
for (int[] i : dp) {
// should avoid overflow for dp[i][j - v[i]] + w[i]
Arrays.fill(i, Integer.MAX_VALUE >> 1);
}
dp[0][0] = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j <= V; j++) {
if (v[i] > j) {
// value[i] > j
dp[i + 1][j] = dp[i][j];
} else {
// should avoid overflow for dp[i][j - v[i]] + w[i]
dp[i + 1][j] = Math.min(dp[i][j], dp[i][j - v[i]] + w[i]);
}
}
} // search for the largest i dp[N][i] <= W
for (int i = V; i >= 0; i--) {
// if (dp[N][i] <= W) return i;
if (dp[N][i] <= W) return i;
}
return 0;
} // repeated backpack
public static int backpack3(int W, int[] w, int[] v) {
int N = w.length;
int[][] dp = new int[N + 1][W + 1];
for (int i = 0; i < N; i++) {
for (int j = 0; j <= W; j++) {
if (w[i] > j) {
// backpack cannot hold w[i]
dp[i + 1][j] = dp[i][j];
} else {
dp[i + 1][j] = Math.max(dp[i][j], dp[i + 1][j - w[i]] + v[i]);
}
}
} return dp[N][W];
} public static void main(String[] args) {
int[] w1 = new int[]{2, 1, 3, 2};
int[] v1 = new int[]{3, 2, 4, 2};
int W1 = 5;
boolean[] itemTake = new boolean[w1.length + 1];
System.out.println("Testcase for 01 backpack.");
int bp1 = backpack(W1, w1, v1, itemTake); // bp1 should be 7
System.out.println("Maximum value: " + bp1);
for (int i = 0; i < itemTake.length; i++) {
if (itemTake[i]) {
System.out.println("item " + i + ", weight " + w1[i] + ", value " + v1[i]);
}
} System.out.println("Testcase for 01 backpack with large W.");
int bp2 = backpack2(W1, w1, v1); // bp2 should be 7
System.out.println("Maximum value: " + bp2); int[] w3 = new int[]{3, 4, 2};
int[] v3 = new int[]{4, 5, 3};
int W3 = 7;
System.out.println("Testcase for repeated backpack.");
int bp3 = backpack3(W3, w3, v3); // bp3 should be 10
System.out.println("Maximum value: " + bp3);
}
}

【ACM】Knapsack without repetition - 01背包问题的更多相关文章

  1. 【ACM】拦截导弹 - 0-1背包问题

    拦截导弹 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 某国为了防御敌国的导弹袭击,发展中一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到 ...

  2. ACM:动态规划,01背包问题

    题目: 有n件物品和一个容量为C的背包.(每种物品均仅仅有一件)第i件物品的体积是v[i],重量是w[i].选一些物品装到这个背包中,使得背包内物品在整体积不超过C的前提下重量尽量大. 解法:两种思路 ...

  3. 动态规划法(四)0-1背包问题(0-1 Knapsack Problem)

      继续讲故事~~   转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了.这天晚上,妈妈正在耐心地帮丁丁收拾行李.家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编 ...

  4. 【优化算法】变邻域搜索算法解决0-1背包问题(Knapsack Problem)代码实例 已

    01 前言 经过小编这几天冒着挂科的风险,日日修炼,终于赶在考试周中又给大家更新了一篇干货文章.关于用变邻域搜索解决0-1背包问题的代码.怎样,大家有没有很感动? 02 什么是0-1背包问题? 0-1 ...

  5. 0-1背包问题(0-1 knapsack problem)

    0-1背包问题描述:一个正在抢劫商店的小偷发现了n个商品,第i个商品价值 vi 美元,重 wi 磅,vi 和 wi 都是整数.这个小偷希望拿走价值尽量高的商品,但他的背包最多能容纳 S 磅重的商品,S ...

  6. HDOJ 2546饭卡(01背包问题)

    http://acm.hdu.edu.cn/showproblem.php?pid=2546 Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如 ...

  7. hdu5188 加限制的01背包问题

    http://acm.hdu.edu.cn/showproblem.php? pid=5188 Problem Description As one of the most powerful brus ...

  8. 01背包问题(Java实现)

    关于背包问题,百度文库上有崔添翼大神的<背包九讲>,不明的请移步查看.这里仅介绍最基本的01背包问题的实现. public class Knapsack { private final i ...

  9. HDU 2602 Bone Collector(经典01背包问题)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2602 Bone Collector Time Limit: 2000/1000 MS (Java/O ...

随机推荐

  1. 数字图像处理实验(6):PROJECT 04-02,Fourier Spectrum and Average Value 标签: 图像处理MATLABfft 2017-05-07 23:1

    实验要求: Objective: To observe the Fourier spectrum by FFT and the average value of an image. Main requ ...

  2. can通信实验

    源码讲解 1.硬件连接 需要两个开发板 2.初始化函数讲解 针对F103的 3.发送函数讲解 4.接收函数讲解 5.main函数讲解

  3. Linux之tcpdump使用详解

    1.1  三种关键字 关于类型的关键字 第一种是关于类型的关键字,主要包括host,net,port, 例如 host 210.27.48.2,指明 210.27.48.2是一台主机,net 202. ...

  4. Excel课程学习

    1.Excel软件简介 1.1历史上的其他数据处理软件与Microsoft Excel 1977年,苹果公司开发了一款数据处理软件,当时这款软件卖的非常好,用软件的尾巴摇动硬件的狗,当时有人因为这款软 ...

  5. Spark的广播变量模块

    有人问我,如果让我设计广播变量该怎么设计,我想了想说,为啥不用zookeeper呢? 对啊,为啥不用zookeeper,也许spark的最初设计哲学就是尽量不使用别的组件,他有自己分布式内存文件系统, ...

  6. Gremlin:图遍历语言

    Gremlin简介 Gremlin是Apache TinkerPop 框架下的图遍历语言.Gremlin是一种函数式数据流语言,可以使得用户使用简洁的方式表述复杂的属性图(property graph ...

  7. NMS---非极大值抑制

    在物体检测中,NMS(Non-maximum suppression)应用十分广泛,其目的是为了消除多余的框,找到最佳的物体检测的位置.在RCNN系列算法中,会从一张图片中找出很多个候选框(可能包含物 ...

  8. Python3中集合的混合使用

    比较简单没什么好说的: list_1 = [1,2,3,4,6,3,2,5,7,8,2,1] list_1 = set(list_1) list_1.add(999) list_2 = set([2, ...

  9. Unity Fps示例

    https://mp.weixin.qq.com/s/JGnU6TW1V0BCrz0mCRswig

  10. 对接极光IM之修改头像

    因为项目中使用了极光IM,在对接极光的时候,发现了如果想要在改变自己个人中心的头像同时改变极光IM的头像,就必须要将本地磁盘的文件上传到极光服务器,根据反馈的media_id来进行修改头像. 但是因为 ...