The Fortified Forest
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6115   Accepted: 1720

Description

Once upon a time, in a faraway land, there lived a king. This king owned a small collection of rare and valuable trees, which had been gathered by his ancestors on their travels. To protect his trees from thieves, the king ordered that a high fence be built around them. His wizard was put in charge of the operation.
Alas, the wizard quickly noticed that the only suitable material
available to build the fence was the wood from the trees themselves. In
other words, it was necessary to cut down some trees in order to build a
fence around the remaining trees. Of course, to prevent his head from
being chopped off, the wizard wanted to minimize the value of the trees
that had to be cut. The wizard went to his tower and stayed there until
he had found the best possible solution to the problem. The fence was
then built and everyone lived happily ever after.

You are to write a program that solves the problem the wizard faced.

Input

The
input contains several test cases, each of which describes a
hypothetical forest. Each test case begins with a line containing a
single integer n, 2 <= n <= 15, the number of trees in the forest.
The trees are identified by consecutive integers 1 to n. Each of the
subsequent n lines contains 4 integers xi, yi, vi, li that describe a
single tree. (xi, yi) is the position of the tree in the plane, vi is
its value, and li is the length of fence that can be built using the
wood of the tree. vi and li are between 0 and 10,000.

The input ends with an empty test case (n = 0).

Output

For
each test case, compute a subset of the trees such that, using the wood
from that subset, the remaining trees can be enclosed in a single fence.
Find the subset with minimum value. If more than one such minimum-value
subset exists, choose one with the smallest number of trees. For
simplicity, regard the trees as having zero diameter.

Display, as shown below, the test case numbers (1, 2, ...), the
identity of each tree to be cut, and the length of the excess fencing
(accurate to two fractional digits).

Display a blank line between test cases.

Sample Input

6
0 0 8 3
1 4 3 2
2 1 7 1
4 1 2 3
3 5 4 6
2 3 9 8
3
3 0 10 2
5 5 20 25
7 -3 30 32
0

Sample Output

Forest 1
Cut these trees: 2 4 5
Extra wood: 3.16 Forest 2
Cut these trees: 2
Extra wood: 15.00

题意:国王有一些树,他想砍掉一些树做篱笆围住剩下的树,每棵树都有坐标,价值和做成篱笆长度,我们应该使砍掉的树的价值尽可能的小并且做成的篱笆能够围住剩下的树,如果方案的价值相同选择砍掉数量
少的,最后输出砍掉的树的编号和篱笆围了之后还能剩下多少。
题解:深坑啊。。。WA了好多次,竟然是cmp函数里面的变量p[0]的函数名冲突了...world final的水题都好难。。过,但是想法不难。。就是每次枚举那些树不取和取,不超过2^15次方,用二进制表示..然后再进行凸包。。比较。。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
const double eps = 1e-;
const int N = ;
struct Point
{
double x,y,value,len;
} p[N],q[N];
Point Stack[N];
int n;
double cross(Point a,Point b,Point c)
{
return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x);
}
double dis(Point a,Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
Point po; //大坑
int cmp(Point a,Point b)
{
if(cross(a,b,po)>) return ;
if(cross(a,b,po)==&&dis(b,po)-dis(a,po)>eps) return ;
return ;
}
double Graham(Point p[],int n)
{
if(n==||n==) return ;
if(n==) return *dis(p[],p[]);
int k =;
for(int i=; i<n; i++)
{
if(p[k].y>p[i].y||((p[k].y==p[i].y)&&(p[k].x>p[i].x))) k=i;
}
swap(p[],p[k]);
po = p[]; ///嗯,这里
int top=;
sort(p+,p+n,cmp);
Stack[]=p[];
Stack[]=p[];
Stack[]=p[];
for(int i=; i<n; i++)
{
while(top>=&&cross(p[i],Stack[top],Stack[top-])>=)
{
top--;
}
Stack[++top]=p[i];
}
double ans = ;
for(int i=; i<=top; i++)
{
ans+=dis(Stack[i],Stack[i-]);
}
ans+=dis(Stack[top],Stack[]);
return ans;
}
int main()
{
int _count = ;
while(scanf("%d",&n)!=EOF&&n)
{
for(int i=; i<n; i++)
{
scanf("%lf%lf%lf%lf",&p[i].x,&p[i].y,&p[i].value,&p[i].len);
}
int t = (<<n)-;
int cnt[N],id[N];///保存要砍掉的树的编号
double save=;
int num=; ///要砍掉的数的数目
double mi=; ///保存要砍掉的树的最小价值
for(int i=; i<t; i++) ///1代表砍掉这棵树,0代表不砍,至少要砍一棵树
{
double value=,len=;
int k=,k1=;
for(int j=; j<n; j++)
{
if((i>>j)&) ///移位操作,表示当前第j+1棵树要砍掉
{
cnt[k++] = j;
value+=p[j].value;
len+=p[j].len;
}
else q[k1++] = p[j];
}
double L = Graham(q,k1);
if(len-L>eps) ///如果能够组成的篱笆长度大于凸包周长
{
if(mi-value>eps||(fabs(value-mi)<eps&&k<num))
{
mi = value;
for(int j=; j<k; j++) id[j]=cnt[j];
num = k;
save = len - L;
}
}
}
printf("Forest %d\nCut these trees: ",_count++);
for(int i=; i<num; i++)
{
printf("%d ",id[i]+);
}
printf("\nExtra wood: %.2lf\n\n",save);
}
return ;
}

poj 1873(枚举所有的状态+凸包)的更多相关文章

  1. POJ 1873 The Fortified Forest(凸包)题解

    题意:二维平面有一堆点,每个点有价值v和删掉这个点能得到的长度l,问你删掉最少的价值能把剩余点围起来,价值一样求删掉的点最少 思路:n<=15,那么直接遍历2^15,判断每种情况.这里要优化一下 ...

  2. The Fortified Forest - POJ 1873(状态枚举+求凸包周长)

    题目大意:有个国王他有一片森林,现在他想从这个森林里面砍伐一些树木做成篱笆把剩下的树木围起来,已知每个树都有不同的价值还有高度,求出来砍掉那些树可以做成篱笆把剩余的树都围起来,要使砍伐的树木的价值最小 ...

  3. poj 1873 凸包+枚举

    The Fortified Forest Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6198   Accepted: 1 ...

  4. ●POJ 1873 The Fortified Forest

    题链: http://poj.org/problem?id=1873 题解: 计算几何,凸包 枚举被砍的树的集合.求出剩下点的凸包.然后判断即可. 代码: #include<cmath> ...

  5. poj - 3254 - Corn Fields (状态压缩)

    poj - 3254 - Corn Fields (状态压缩)超详细 参考了 @外出散步 的博客,在此基础上增加了说明 题意: 农夫有一块地,被划分为m行n列大小相等的格子,其中一些格子是可以放牧的( ...

  6. POJ 1873 UVA 811 The Fortified Forest (凸包 + 状态压缩枚举)

    题目链接:UVA 811 Description Once upon a time, in a faraway land, there lived a king. This king owned a ...

  7. 简单几何(凸包+枚举) POJ 1873 The Fortified Forest

    题目传送门 题意:砍掉一些树,用它们做成篱笆把剩余的树围起来,问最小价值 分析:数据量不大,考虑状态压缩暴力枚举,求凸包以及计算凸包长度.虽说是水题,毕竟是final,自己状压的最大情况写错了,而且忘 ...

  8. POJ 1873 The Fortified Forest [凸包 枚举]

    The Fortified Forest Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6400   Accepted: 1 ...

  9. POJ 1873 The Fortified Forest(枚举+凸包)

    Description Once upon a time, in a faraway land, there lived a king. This king owned a small collect ...

随机推荐

  1. Centos7 grep命令简介

    grep 是一个最初用于 Unix 操作系统的命令行工具.在给出文件列表或标准输入后,grep会对匹配一个或多个正则表达式的文本进行搜索,并只输出匹配(或者不匹配)的行或文本. grep 可根据提供的 ...

  2. Nodejs-异步操作

    1.阻塞 console.time('main');//代码计时器 //不断循环阻塞了代码的执行 for(var i=0;i<10000000;i++){ } console.timeEnd(' ...

  3. PaaS服务之路漫谈(一)

    此文已由作者尧飘海授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. PaaS服务之路漫谈(一) 1983年,SUN公司提出的网络即计算的理念:2006年亚马逊(Amazon)推 ...

  4. 滑动菜单栏之开源项目SlidingMenu的使用

    一.SlidingMenu简介 相信大家对SlidingMenu都不陌生了,它是一种比较新的设置界面或配置界面的效果,在主界面左滑或者右滑出现设置界面效果,能方便的进行各种操作.很多优秀的应用都采用了 ...

  5. 《Cracking the Coding Interview》——第17章:普通题——题目10

    2014-04-28 23:54 题目:XML文件的冗余度很大,主要在于尖括号里的字段名.按照书上给定的方式进行压缩. 解法:这题我居然忘做了,只写了一句话的注解.用python能够相对方便地实现,因 ...

  6. 《Cracking the Coding Interview》——第13章:C和C++——题目8

    2014-04-25 20:27 题目:实现一个能够通过引用计数来实现自动回收数据的智能指针,用C++,不是java. 解法:这题真心牛,我的第一反应是发呆,因为对引用计数的了解仅限于这个名词,完全没 ...

  7. Delphi中的关键字与保留字

    Delphi中的关键字与保留字 分类整理 Delphi 中的“关键字”和“保留字”,方便查询 感谢原作者的收集整理! 关键字和保留字的区别在于,关键字不推荐作标示符(编译器已经内置相关函数或者留给保留 ...

  8. 【Regularization】林轩田机器学习基石

    正则化的提出,是因为要解决overfitting的问题. 以Linear Regression为例:低次多项式拟合的效果可能会好于高次多项式拟合的效果. 这里回顾上上节nonlinear transf ...

  9. Metadata 的概念

    https://www.ibm.com/developerworks/cn/cloud/library/1509_liukg_openstackmeta/ http://mathslinux.org/ ...

  10. [C++] 数据结构应用——链表

    C++ 数据结构应用--链表 代码已经封装成class啦,方便使用. 头文件:Linklist.h #include <iostream> /*********************** ...