POJ 3177 Redundant Paths 无向图边双联通基础题
题意:
给一个无向图,保证任意两个点之间有两条完全不相同的路径
求至少加多少边才能实现
题解:
得先学会一波tarjan无向图
桥的定义是:删除这条边之后该图不联通
一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足 DFN(u)<Low(v).(因为 v 想要到
达 u 的父亲必须经过(u,v)这条边,所以删去这条边,图不连通)
先用Tarjan无向图缩边双联通分量,这样原图就构成了一颗树,
对于树的叶子节点来说,显然他们需要连边,可以证明的是,我们连至多(叶子节点个数+1)/2的边就可以完成加边(叶子节点两两相连)
所以答案就是(叶子节点个数+1)/2
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 5010
#define M 10100
using namespace std;
int head[N],cut[M],n,m,ecnt=,u,v,dfn[N],low[N],indx,fa[N],du[N],ans;
struct edge
{
int u,v,nxt;
}e[M*];
inline int find(int x)
{
return fa[x]=fa[x]==x?x:find(fa[x]);
}
void add(int u,int v)
{
e[ecnt].v=v;
e[ecnt].nxt=head[u];
e[ecnt].u=u;
head[u]=ecnt++;
e[ecnt].v=u;
e[ecnt].nxt=head[v];
e[ecnt].u=v;
head[v]=ecnt++;
}
void dfs(int u,int E)
{
dfn[u]=low[u]=++indx;
for (int i=head[u];i;i=e[i].nxt)
{
if (i==(E^)) continue;
int v=e[i].v;
if (!dfn[v])
{
dfs(v,i);
if (low[v]<low[u]) low[u]=low[v];
if (low[v]>dfn[u]) cut[i]=cut[i^]=;
}
else
if (dfn[v]<low[u])
low[u]=dfn[v];
}
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v);
}
dfs(,-);
for (int i=;i<=n;i++)
fa[i]=i;
for (int i=;i<ecnt;i+=)
if (!cut[i]) fa[find(e[i].u)]=find(e[i].v);
for (int i=;i<ecnt;i+=)
if (cut[i]) du[find(e[i].u)]++,du[find(e[i].v)]++;
for (int i=;i<=n;i++)
if (find(i)==i && du[i]==) ans++;
printf("%d",(ans+)/);
return ;
}
POJ 3177 Redundant Paths 无向图边双联通基础题的更多相关文章
- POJ 3177 Redundant Paths(边双连通的构造)
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13717 Accepted: 5824 ...
- POJ 3177 Redundant Paths(边双连通分量)
[题目链接] http://poj.org/problem?id=3177 [题目大意] 给出一张图,问增加几条边,使得整张图构成双连通分量 [题解] 首先我们对图进行双连通分量缩点, 那么问题就转化 ...
- POJ - 3177 Redundant Paths (边双连通缩点)
题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...
- POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)
POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...
- tarjan算法求桥双连通分量 POJ 3177 Redundant Paths
POJ 3177 Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12598 Accept ...
- POJ 3352 Road Construction ; POJ 3177 Redundant Paths (双联通)
这两题好像是一样的,就是3177要去掉重边. 但是为什么要去重边呢??????我认为如果有重边的话,应该也要考虑在内才是. 这两题我用了求割边,在去掉割边,用DFS缩点. 有大神说用Tarjan,不过 ...
- POJ 3177 Redundant Paths 双联通分量 割边
http://poj.org/problem?id=3177 这个妹妹我大概也曾见过的~~~我似乎还没写过双联通分量的blog,真是智障. 最少需要添多少条边才能使这个图没有割边. 边双缩点后图变成一 ...
- poj 3177 Redundant Paths 求最少添加几条边成为双联通图: tarjan O(E)
/** problem: http://poj.org/problem?id=3177 tarjan blog: https://blog.csdn.net/reverie_mjp/article/d ...
- POJ 3177——Redundant Paths——————【加边形成边双连通图】
Redundant Paths Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
随机推荐
- iconv for linux(c)
// code_convert("gb2312","utf-8",inbuf,outbuf,outlen);static int code_convert(co ...
- 牛客小白月赛1 J おみやげをまらいました 【MAP】
链接:https://www.nowcoder.com/acm/contest/85/J おみやげをまらいました! 蛙蛙还是给你带来了礼物.但它有个小小的要求,那就是你得在石头剪刀布上赢过它才能 ...
- SHGetSpecialFolderLocation获取开始文件夹
SHGetSpecialFolderLocation函数可以获取windows 特殊目录 函数原型:(MSDN官方链接:https://msdn.microsoft.com/en-us/library ...
- JDK1.8简单配置环境变量---两步曲
鄙人最近重新装完系统之后,在安装和配置jdk1.8的时候,发现网上许多教程配置jdk环境变量时都还在沿用传统的方式配置,但是随着技术的更新,完全没有必要那么麻烦了. 下载和安装jdk的教程,在这里就不 ...
- 【PHP项目】伪静态规则
伪静态规则写法RewriteRule-htaccess详细语法使用 2016年03月30日 16:53:59 阅读数:20340 伪静态实际上是利用php把当前地址解析成另一种方法来访问网站,要学伪静 ...
- PLC状态机编程第三篇-RS信号处理
我们今天简要介绍RS指令在状态机中怎么处理的.有些设备按下停止按钮后,没有马上停止,而是到原点后才停止,那么这种情况在状态机中如何表示呢?我们以案例说明之,下面是我们的控制描述. 控制描述 小车从左位 ...
- 关于sql server 2008 r2 展开时报错:参数名:viewInfo ( Microsoft SqlServer Management SqlStudio Explorer )解决思路
今天安装了sql server 2008 R2,安装成功之后我打开软件登陆都没问题,但是一展开选项就弹出错误提示框: 参数名:viewInfo 不能为空 (Microsoft SqlServer Ma ...
- python模块struct和subprocess
准确地讲,Python没有专门处理字节的数据类型.但由于str既是字符串,又可以表示字节,所以,字节数组=str.而在C语言中,我们可以很方便地用struct.union来处理字节,以及字节和int, ...
- 十、mysql之索引原理与慢查询优化
mysql之索引原理与慢查询优化 一.介绍 1.什么是索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还 ...
- C17K:Lying Island
链接 题意: 有n个人,每个人可能会说: 第x个人是好人/坏人 如果第x个人是好人/坏人,则第y个人是好人/坏人 思路: 状压dp,首先每个人所说的人只能是他前面10个人,所以对于第i个人记录下,他前 ...