BZOJ 1912:[Apio2010]patrol 巡逻(树直径)
1912: [Apio2010]patrol 巡逻

Input
Output
Sample Input
1 2
3 1
3 4
5 3
7 5
8 5
5 6
Sample Output
HINT
10%的数据中,n ≤ 1000, K = 1;
30%的数据中,K = 1;
80%的数据中,每个村庄相邻的村庄数不超过 25;
90%的数据中,每个村庄相邻的村庄数不超过 150;
100%的数据中,3 ≤ n ≤ 100,000, 1 ≤ K ≤ 2。
Source
分析:
k=0时显然每条边经过一次,答案为2*(n-1)
k=1时可以发现,新路连的两个端点i,j之间形成环,环上所有边都不需要经过两次,相当于k=0时的答案减去ij间距再+1(新路必须经过),显然ij距离最大时最优,故取树上最长链。
k=2时可以发现,在k=1基础上再连一条边不能直接取次长链,因为每经过k=1选取的链上的边,你将会多走2步,故将原来最长链上的边变成-1,再求最长链,在将k=1答案减去+1即可。
program pat;
type
point=^node;
node=record
x,v:longint; next:point;
end;
var
a:array[..]of point;
f1,f2,s1,s2:array[..]of longint;
n,i,m,max,k,x,y,ans:longint; p:point;
procedure add(x,y:longint);
var p:point;
begin
new(p); p^.x:=y; p^.v:=; p^.next:=a[x]; a[x]:=p;
end;
procedure dfs(x,e:longint);
var p:point; y:longint;
begin
s1[x]:=x; s2[x]:=x;
new(p); p:=a[x];
while p<>nil do
begin
y:=p^.x;
if y=e then begin p:=p^.next; continue; end;
dfs(y,x);
if f1[y]+p^.v>f1[x] then
begin
f2[x]:=f1[x]; s2[x]:=s1[x];
f1[x]:=f1[y]+p^.v; s1[x]:=y;
end
else
if f1[y]+p^.v>f2[x] then
begin
f2[x]:=f1[y]+p^.v; s2[x]:=y;
end;
p:=p^.next;
end;
if f1[x]+f2[x]>f1[max]+f2[max] then
max:=x;
end;
procedure work(x:longint);
var p:point; y:longint;
begin
new(p); p:=a[x];
while p<>nil do
begin
y:=p^.x;
if y=s1[x] then begin p^.v:=-; work(y); break; end;
p:=p^.next;
end;
end;
begin
assign(input,'pat.in');reset(input);
assign(output,'pat.out');rewrite(output);
readln(n,k);
for i:= to n- do
begin
readln(x,y); add(x,y); add(y,x);
end;
ans:=*(n-); max:=; f1[]:=; f2[]:=;
dfs(,);
ans:=ans-f1[max]-f2[max]+;
if k= then writeln(ans) else
begin
fillchar(f1,sizeof(f1),);
fillchar(f2,sizeof(f2),);
new(p); p:=a[max];
while p<>nil do
begin
y:=p^.x;
if (y=s1[max])or(y=s2[max]) then p^.v:=-;
p:=p^.next;
end;
work(s1[max]); work(s2[max]); max:=;
dfs(,);
ans:=ans-f1[max]-f2[max]+;
writeln(ans);
end;
close(input); close(output);
end.
BZOJ 1912:[Apio2010]patrol 巡逻(树直径)的更多相关文章
- bzoj 1912 : [Apio2010]patrol 巡逻 树的直径
题目链接 如果k==1, 显然就是直径. k==2的时候, 把直径的边权变为-1, 然后在求一次直径. 变为-1是因为如果在走一次这条边, 答案会增加1. 学到了新的求直径的方法... #includ ...
- BZOJ 1912: [Apio2010]patrol 巡逻 (树的直径)(详解)
题目: https://www.lydsy.com/JudgeOnline/problem.php?id=1912 题解: 首先,显然当不加边的时候,遍历一棵树每条边都要经过两次.那么现在考虑k==1 ...
- bzoj 1912: [Apio2010]patrol 巡逻【不是dp是枚举+堆】
我是智障系列.用了及其麻烦的方法= =其实树形sp就能解决 设直径长度+1为len(环长) 首先k=1,直接连直径两端就好,答案是2*n-len 然后对于k=2,正常人的做法是树形dp:先求直径,然后 ...
- bzoj 1912: [Apio2010]patrol 巡逻
呵呵呵呵呵呵,自己画图,大概半个小时,觉的连上边会成环(是不是该交仙人掌了??)然后求环不重合部分最大就好了, 结果写了一坨DP,最后写不下去了,再次扒了题解. 发现我真的是个sb. k==1,直接是 ...
- 【BZOJ】1912: [Apio2010]patrol 巡逻(树的直径)
题目 传送门:QWQ 分析 $ k=1 $ 时显然就是树的直径 $ k=2 $ 时怎么做呢? 做法是把一开始树的直径上的边的边权改成$ -1 $,那么当我们第二次用这些边做环时就抵消了一开始的贡献. ...
- 【BZOJ-1912】patrol巡逻 树的直径 + DFS(树形DP)
1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 1034 Solved: 562[Submit][St ...
- [Apio2010]patrol 巡逻
1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 2541 Solved: 1288[Submit][S ...
- 【BZOJ1912】[Apio2010]patrol 巡逻 树形DP
[BZOJ1912][Apio2010]patrol 巡逻 Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示 ...
- bzoj 1912 巡逻(树直径)
Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Ou ...
随机推荐
- 基于java开发的开源代码GPS北斗位置服务监控平台
最近在研究位置服务平台,基于全球卫星定位技术(GNSS).互联网技术.空间地理信息技术(GIS).3G/4G无线通信技术,面向全国公众用户建立大容量.实时.稳定的位置信息服务运营平台.实现管理目标的实 ...
- Git学习第一天--安装Git和创建版本库
Windows上安装Git msysgit是Windows版的Git,从https://git-for-windows.github.io下载(备份:百度网盘),然后按默认选项安装即可. 安装完成后, ...
- python基础数据类型之字符串操作
1.字符串切片ps:字符串是不可变的对象, 所以任何操作对原字符 是不会有任何影响的 s1 = "python最简洁" print(s1[0]) print(s1[1]) prin ...
- Springcloud Eureka 启动失败:ERROR org.springframework.boot.SpringApplication - Application run failed
在测试Euruka作为服务注册中心的时候碰到了这个问题 [main] ERROR org.springframework.boot.SpringApplication - Application ru ...
- Maven - 依赖冲突
依赖冲突有两个规则: 短路优先范例:A -> B -> C -> X-2.0.0A -> D -> X-1.0.0那么A -> X-1.0.0这个版本 先声明优先范 ...
- docker基础——关于安装、常用指令以及镜像制作初体验
为什么使用docker docker就是一个轻量级的虚拟机,他解决的是服务迁移部署的时候环境配置问题.比如常见的web服务依赖于jdk.Tomcat.数据库等工具,迁移项目就需要在新的机器重新配置这些 ...
- docker官方仓库下载镜像
官方仓库镜像地址:https://hub.docker.com/search/ 以下载mysql为例 进入到详情页后我们看到有很多Tags 我们选择5.7.25版本进行下载 # docker pull ...
- 【PHP】Maximum execution time of 30 seconds exceeded解决办法
Maximum execution time of 30 seconds exceeded,今天把这个错误的解决方案总结一下: 简单总结一下解决办法: 报错一:内存超限,具体报错语句忘了,简单说一下解 ...
- A Country on Wheels【车轮上的国家】
A Country on Wheels As cultural symbols go, the American car is quite young. 作为文化象征的美国汽车还相当年轻. The ...
- 裸机——DDR
1.DDR介绍 DDR,是SDRAM的改进,是双通道的SDRAM, SDRAM是同步动态随机访问存储器. SDRAM与SRAM相对于,二者的特点是: SDRAM 需要初始化,使用时许访问,价格便宜. ...