题目描述

给出一个长度为NN的非负整数序列A_iAi​,对于所有1 ≤ k ≤ (N + 1) / 21≤k≤(N+1)/2,输出A_1, A_3, …, A_{2k - 1}A1​,A3​,…,A2k−1​的中位数。即前1,3,5,…1,3,5,…个数的中位数。

输入格式

第11行为一个正整数NN,表示了序列长度。

第22行包含NN个非负整数A_i (A_i ≤ 10^9)Ai​(Ai​≤109)。

输出格式

共(N + 1) / 2(N+1)/2行,第ii行为A_1, A_3, …, A_{2k - 1}A1​,A3​,…,A2k−1​的中位数。

本题要用到优先队列定义堆:

such as:

    priority_queue<int,vetor<int>,greater<int> >p1;——小根堆(扔进去的数据自动排为由小到大)

    priority_queue<int,vector<int>,less<int> >p2; ——大根堆(扔进去的数据自动排为由大到小)

堆顶堆:

   

 代码(愿以后的我能看懂):

 #include<bits/stdc++.h>
using namespace std;
priority_queue<int,vector<int>,less<int> >p2;
priority_queue<int,vector<int>,greater<int> >p1;
int n,x;
int mid;
int main()
{
cin>>n;
cin>>x;
mid=x;
cout<<mid<<endl;//取中位数
for(int i=;i<=n;i++)
{
cin>>x;
if(x<mid)
p2.push(x);
if(x>mid)
p1.push(x);
if((i-)%==)
{
if(p1.size() >p2.size() )
{
p2.push(mid);
mid=p1.top() ;
p1.pop() ;
}
if(p1.size() <p2.size() )
{
p1.push(mid) ;
mid=p2.top() ;
p2.pop() ;
}
cout<<mid<<endl;
}
}
return ;
}

P1168 中位数 堆的更多相关文章

  1. [luogu]P1168 中位数[堆]

    [luogu]P1168 中位数 题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数.即前1 ...

  2. P1168 中位数[堆 优先队列]

    题目描述 给出一个长度为NNN的非负整数序列AiA_iAi​,对于所有1≤k≤(N+1)/21 ≤ k ≤ (N + 1) / 21≤k≤(N+1)/2,输出A1,A3,…,A2k−1A_1, A_3 ...

  3. 洛谷——P1168 中位数

    P1168 中位数 题目描述 给出一个长度为NN的非负整数序列$A_i$​,对于所有1 ≤ k ≤ (N + 1),输出$A_1, A_3, …, A_{2k - 1}A1​,A3​,…,A2k−1​ ...

  4. P1168 中位数

    P1168 中位数树状数组+二分答案.树状数组就是起一个高效查询比二分出来的数小的有几个. #include<iostream> #include<cstdio> #inclu ...

  5. 【洛谷】【堆】P1168 中位数

    [题目描述:] 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数.即前1,3,5,……个数的中位数. ...

  6. P1168 中位数(对顶堆)

    题意:维护一个序列,两种操作 1.插入一个数 2.输出中位数(若长度为偶数,输出中间两个较小的那个) 对顶堆 维护一个小根堆,一个大根堆,大根堆存1--mid,小根堆存mid+1---n 这样堆顶必有 ...

  7. 堆--P1168 中位数

    题目描述 给出一个长度为N的非负整数序列Ai​,对于所有1≤k≤(N+1)/2,输出A1,A3,…,A2k−1的中位数.即前1,3,5,…个数的中位数. 输入格式 第1行为一个正整数N,表示了序列长度 ...

  8. 洛谷 P1168 中位数(优先队列)

    题目链接 https://www.luogu.org/problemnew/show/P1168 解题思路 这个题就是求中位数,但是暴力会tle,所以我们用一种O(nlogn)的算法来实现. 这里用到 ...

  9. LuoGu P1168 中位数

    题目描述 给出一个长度为 $ N $ 的非负整数序列 $ A_i $ ,对于所有 $ 1 ≤ k ≤ (N + 1) / 2 $ ,输出 $ A_1, A_3, -, A_{2k - 1} $ 的中位 ...

随机推荐

  1. break continue exit return 的区别

    [root@localhost day1]# cat ss.sh #!/bin/bash for ((i=0;i<5;i++)) do if [ $i -eq 3 ] then break #c ...

  2. toJSON() 方法,将 Date 对象转换为字符串,并格式化为 JSON 数据格式。

    JavaScript toJSON() 方法 定义和用法 toJSON() 方法可以将 Date 对象转换为字符串,并格式化为 JSON 数据格式. JSON 数据用同样的格式就像x ISO-8601 ...

  3. Spring Boot教程(十五)使用Intellij中的Spring Initializr来快速构建Spring Boot/Cloud工程

    在之前的所有Spring Boot和Spring Cloud相关博文中,都会涉及Spring Boot工程的创建.而创建的方式多种多样,我们可以通过Maven来手工构建或是通过脚手架等方式快速搭建,也 ...

  4. mssql的sql注入拿后台

    0x01判断数据 ①判断数据库类型 and exists (select * from sysobjects)--返回正常为mssql(也名sql server) and exists (select ...

  5. mysql 时间差

    SELECT TIMESTAMPDIFF(minute,'2019-01-01 00:00:00', '2019-01-01 01:30:00') 返回结果 90 类推,有 SELECT TIMEST ...

  6. idea中查看一个类的调用用和被调用用关系

  7. @清晰掉 spi协议及工作原理分析

    说明.文章摘自:SPI协议及其工作原理浅析 http://bbs.chinaunix.net/thread-1916003-1-1.html 一.概述. SPI, Serial Perripheral ...

  8. Linux添加用户到sudoers组

    切换用户至rootvim /etc/sudoers 找到root    ALL=(ALL)       ALL,在下方新增 stack  ALL=(ALL)       NOPASSWD: ALL w ...

  9. npm 错误记录

    npm run dev iview-weapp@1.1.0 dev /Users/Jovins/Desktop/小程序/iview-weapp gulp --gulpfile build/build- ...

  10. 嵌入式Linux之NFS配置

    NFS(Network File System) 1.RPC和rpcbind RPC(Remote Procedure Call)即远程过程调用,是分布式应用的基础,即允许计算机远程调用网络上其他计算 ...