前言

这道题还是比较简单的

解法

首先将题目转化为数学语言。

题目要我们求的是:

\[\sum_{i=1}^a\sum_{j=1}^b[gcd(i,j)=d]
\]

按照套路1,我们将其同时除以d转换为

\[\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{b}{d}\rfloor}[gcd(i,j)=1]
\]

按照技巧1,我们将其变换为

\[\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{b}{d}\rfloor}\sum_{x|gcd(i,j)}\mu(x)
\]

按照技巧3,我们将其变换为

\[\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{b}{d}\rfloor}\sum_{x=1}^{\lfloor\frac{a}{d}\rfloor}\mu(x)\times[x|gcd(i,j)]
\]

我们发现要满足\(d|gcd(i,j)\),我们的i,j必须是d的倍数

然后我们可以开心地去掉两个\(\sum\)

\[\sum_{x=1}^{\lfloor\frac{a}{d}\rfloor}\mu(x)\times\lfloor\frac{a}{xd}\rfloor\lfloor\frac{b}{xd}\rfloor
\]

至此化简结束,我们求出\(\mu\)函数的前缀和

然后我们整除分块,解决问题

代码

#include <cstdio>
#include <algorithm>
#define ll long long
#define MAXNUM 500005 int mu[MAXNUM], is_not_prime[MAXNUM], primes[MAXNUM / 10], prime_num;
// prefix
ll qzh[MAXNUM]; int read(){
int x = 0; int zf = 1; char ch = ' ';
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;
} void init(){
mu[1] = 1; is_not_prime[0] = is_not_prime[1] = 1;
for (int i = 2; i <= MAXNUM; ++i){
if (!is_not_prime[i]) mu[primes[++prime_num] = i] = -1;
for (int j = 1; j <= prime_num && primes[j] * i <= MAXNUM; ++j){
is_not_prime[i * primes[j]] = 1;
if (!(i % primes[j])) break;
else
mu[primes[j] * i] = -mu[i];
}
}
for (int i = 1; i <= MAXNUM; ++i)
qzh[i] = qzh[i - 1] + mu[i];
} int main(){
init();
int T = read(), n, m, d; ll ans;
while (T--){
n = read(), m = read(), d = read();
n /= d, m /= d;
if (n > m) n ^= m ^= n ^= m; ans = 0;
for (int l = 1, r; l <= n; l = r + 1){
r = std::min(n / (n / l), m / (m / l));
ans += (ll)(qzh[r] - qzh[l - 1]) * (n / l) * (m / l);
}
printf("%lld\n", ans);
}
return 0;
}

P.S. 数组开的好像有点大,不要介意

[洛谷2257]ZAP-Queries 题解的更多相关文章

  1. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  2. 【洛谷P3960】列队题解

    [洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...

  3. 【洛谷2257/BZOJ2820】YY的GCD(数论/莫比乌斯函数)

    题目: 洛谷2257 预备知识:莫比乌斯定理(懵逼乌斯定理) \(\mu*1=\epsilon\)(证bu明hui略zheng) 其中(我校学长把\(\epsilon(x)\)叫单位函数但是为什么我没 ...

  4. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  5. 洛谷P1577 切绳子题解

    洛谷P1577 切绳子题解 题目描述 有N条绳子,它们的长度分别为Li.如果从它们中切割出K条长度相同的 绳子,这K条绳子每条最长能有多长?答案保留到小数点后2位(直接舍掉2为后的小数). 输入输出格 ...

  6. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

  7. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

  8. 【洛谷P3410】拍照题解(最大权闭合子图总结)

    题目描述 小B有n个下属,现小B要带着一些下属让别人拍照. 有m个人,每个人都愿意付给小B一定钱让n个人中的一些人进行合影.如果这一些人没带齐那么就不能拍照,小B也不会得到钱. 注意:带下属不是白带的 ...

  9. [BZOJ 3039&洛谷P4147]玉蟾宫 题解(单调栈)

    [BZOJ 3039&洛谷P4147]玉蟾宫 Description 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. ...

  10. 洛谷 P3695 CYaRon!语 题解 【模拟】【字符串】

    大模拟好啊! 万一远古计算机让我写个解释器还真是得爆零了呢. 题目背景 「千歌です」(我是千歌).「曜です」(我是曜).「ルビィです」(我是露比).「3人合わせて.We are CYaRon! よろし ...

随机推荐

  1. FacertGrid()的使用

    查看数据的前五行 tips = sns.load_dataset("tips") tips.head() 引入数据,布置横向画布 g = sns.FacetGrid(tips, c ...

  2. Android——LruCache源码解析

    以下针对 Android API 26 版本的源码进行分析. 在了解LruCache之前,最好对LinkedHashMap有初步的了解,LruCache的实现主要借助LinkedHashMap.Lin ...

  3. python控制流-名词解释

    一.控制流的元素 控制流语句的开始部分通常是“条件”,接下来是一个代码块,称为“子句”. 二.控制流的条件 条件为了判断下一步如何进行,从而求布尔值的表达式.几乎所有的控制流语句都使用条件. 三.代码 ...

  4. net 架构师-数据库-sql server-002-工具

    本章讲述的工具包括: SQL Server 联机丛书 SQL Server配置管理器 SQL Server Management Studio SQL Server Business Intellig ...

  5. 不是我吹,Lambda这个坑你肯定不知道!

    上周有小伙伴反馈zk连接很慢.整理出zk连接的关键逻辑如下: public class ClientZkAgent {   //单例模式   private static final ClientZk ...

  6. Redis 内存满了怎么办……

    我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以我们在使用Redis的时候可以配置Redis能使用的最大的内存大小. 1.通过配置文件配置 通过在Redis安装目录 ...

  7. windows上安装 包管理工具choco及scoop

    1.安装 choco: 1.1.使用管理员方式打开 PowerShell 1.2.输入 Set-ExecutionPolicy RemoteSigned,输入 Y 1.3.安装 choco输入:iwr ...

  8. stringstream istringstream ostringstream 三者的区别

    stringstream istringstream ostringstream 三者的区别 说明 ostringstream : 用于执行C风格字符串的输出操作. istringstream : 用 ...

  9. Paper Reading_ML for system

    最近(以及预感接下来的一年)会读很多很多的paper......不如开个帖子记录一下读paper心得 SysML相关的文章很多来源于上学期的8980课.有些和具体field(比如DB/architec ...

  10. 图像描点标注-labelme的安装及使用

    1.直接使用pip安装lebelme pip install labelme 2.labelme的使用 找到labelme的安装路径,先找到python的安装路径如我的,C:\Users\Think\ ...