前言

这道题还是比较简单的

解法

首先将题目转化为数学语言。

题目要我们求的是:

\[\sum_{i=1}^a\sum_{j=1}^b[gcd(i,j)=d]
\]

按照套路1,我们将其同时除以d转换为

\[\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{b}{d}\rfloor}[gcd(i,j)=1]
\]

按照技巧1,我们将其变换为

\[\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{b}{d}\rfloor}\sum_{x|gcd(i,j)}\mu(x)
\]

按照技巧3,我们将其变换为

\[\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{b}{d}\rfloor}\sum_{x=1}^{\lfloor\frac{a}{d}\rfloor}\mu(x)\times[x|gcd(i,j)]
\]

我们发现要满足\(d|gcd(i,j)\),我们的i,j必须是d的倍数

然后我们可以开心地去掉两个\(\sum\)

\[\sum_{x=1}^{\lfloor\frac{a}{d}\rfloor}\mu(x)\times\lfloor\frac{a}{xd}\rfloor\lfloor\frac{b}{xd}\rfloor
\]

至此化简结束,我们求出\(\mu\)函数的前缀和

然后我们整除分块,解决问题

代码

#include <cstdio>
#include <algorithm>
#define ll long long
#define MAXNUM 500005 int mu[MAXNUM], is_not_prime[MAXNUM], primes[MAXNUM / 10], prime_num;
// prefix
ll qzh[MAXNUM]; int read(){
int x = 0; int zf = 1; char ch = ' ';
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;
} void init(){
mu[1] = 1; is_not_prime[0] = is_not_prime[1] = 1;
for (int i = 2; i <= MAXNUM; ++i){
if (!is_not_prime[i]) mu[primes[++prime_num] = i] = -1;
for (int j = 1; j <= prime_num && primes[j] * i <= MAXNUM; ++j){
is_not_prime[i * primes[j]] = 1;
if (!(i % primes[j])) break;
else
mu[primes[j] * i] = -mu[i];
}
}
for (int i = 1; i <= MAXNUM; ++i)
qzh[i] = qzh[i - 1] + mu[i];
} int main(){
init();
int T = read(), n, m, d; ll ans;
while (T--){
n = read(), m = read(), d = read();
n /= d, m /= d;
if (n > m) n ^= m ^= n ^= m; ans = 0;
for (int l = 1, r; l <= n; l = r + 1){
r = std::min(n / (n / l), m / (m / l));
ans += (ll)(qzh[r] - qzh[l - 1]) * (n / l) * (m / l);
}
printf("%lld\n", ans);
}
return 0;
}

P.S. 数组开的好像有点大,不要介意

[洛谷2257]ZAP-Queries 题解的更多相关文章

  1. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  2. 【洛谷P3960】列队题解

    [洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...

  3. 【洛谷2257/BZOJ2820】YY的GCD(数论/莫比乌斯函数)

    题目: 洛谷2257 预备知识:莫比乌斯定理(懵逼乌斯定理) \(\mu*1=\epsilon\)(证bu明hui略zheng) 其中(我校学长把\(\epsilon(x)\)叫单位函数但是为什么我没 ...

  4. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  5. 洛谷P1577 切绳子题解

    洛谷P1577 切绳子题解 题目描述 有N条绳子,它们的长度分别为Li.如果从它们中切割出K条长度相同的 绳子,这K条绳子每条最长能有多长?答案保留到小数点后2位(直接舍掉2为后的小数). 输入输出格 ...

  6. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

  7. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

  8. 【洛谷P3410】拍照题解(最大权闭合子图总结)

    题目描述 小B有n个下属,现小B要带着一些下属让别人拍照. 有m个人,每个人都愿意付给小B一定钱让n个人中的一些人进行合影.如果这一些人没带齐那么就不能拍照,小B也不会得到钱. 注意:带下属不是白带的 ...

  9. [BZOJ 3039&洛谷P4147]玉蟾宫 题解(单调栈)

    [BZOJ 3039&洛谷P4147]玉蟾宫 Description 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. ...

  10. 洛谷 P3695 CYaRon!语 题解 【模拟】【字符串】

    大模拟好啊! 万一远古计算机让我写个解释器还真是得爆零了呢. 题目背景 「千歌です」(我是千歌).「曜です」(我是曜).「ルビィです」(我是露比).「3人合わせて.We are CYaRon! よろし ...

随机推荐

  1. 【MM系列】SAP MM模块-配置PO的创建时间

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP MM模块-配置PO的创建时间 ...

  2. 【MM系列】SAP MB5B中FI凭证摘要是激活的/结果可能不正确 的错误

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP MB5B中FI凭证摘要是激活 ...

  3. Java多线程学习——wait方法(管道法/生产者消费者模式)

    简单介绍管道法: 生产者生产数据输送到管道,消费者从管道拿出数据,管道为空消费者等待,管道满生产者生产,消费者消费生产者生产,生产者生产消费者消费. public class Corn { //要生产 ...

  4. 7.安装pycharm----导入Nmap模块----netcat反向shell----metasploitable靶机环境

    安装pycharm www.jetbrains.com/pycharm/ tar -zxvf p补全 ls cd p补全 ls cd bin ls ./pycharm.sh 新建项目 pythonRo ...

  5. docker安装tomcat&部署javaweb程序

    一.docker定制简单的java-web应用镜像 网址: 1.jdk下载网址:https://www.oracle.com/technetwork/java/javase/downloads/jdk ...

  6. 第二章 Git

    1.安装 这个就不必细说了 2.安装完后还要进行一步设置. 在命令行输入: git config --global user.name "Your Name" git config ...

  7. 开篇——从程序员到IT经理

    2002年~2005年我在广州的广东水力电力职业技术学院求学,主修网络工程.求学期间,我从事最多的就是玩游戏,当时就是玩MU和CS,所以有一门编程课叫C语言的“肥佬”(广东话)了,要补考,没办法,于是 ...

  8. window10下搭建ELK环境

    面向微服务开发时会涉及到多系统的日志跟踪,一旦出现问题过滤起来系统间切换非常麻烦,所以需要采用特定工具将日志统一归类处理,方便查询排查错误,下面将介绍一种开源的工具ELK. ELK由ElasticSe ...

  9. 最长公共子序列(LCS) Easy

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. ...

  10. honpeyhonepy

    2019.09.15 简历编辑功能: 2019.09.23 爬虫功能(智联招聘) 2.1 AI同步功能 2019.10.08 登录功能(包括普通用户登录.管理员.招聘人员) 2019.11.10 鉴权 ...