ARC093 F - Dark Horse
https://atcoder.jp/contests/arc093/tasks/arc093_d
题解
先钦定\(1\)号站在第一个位置上,那么他第一轮要和\((2)\)打,第二轮要和\((3,4)\)打,第三轮和\((5,6,7,8)\)打。
那么这些区间的最小值不能是给出的数。
考虑容斥。
我们把所有限制位置从大到小排序,设\(dp[i][s]\)表示前\(i\)个数,\(S\)集合中的区间已经被覆盖了的方案数。
那么我们每做到一个数,考虑把它放到一个没有被占用的区间,那么这个区间还能放的数的个数就是\((1<<n)-s-a[i]\)。
最后我们发现无论1站在哪都是一样的,所以乘上\(2^n\)就行了。
代码
#include<bits/stdc++.h>
#define N 17
using namespace std;
typedef long long ll;
const int mod=1e9+7;
int n,m,a[N];
ll jie[1<<N],ni[1<<N],dp[N][1<<N];
int cnt[1<<N];
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
inline void MOD(ll &x){x=x>=mod?x-mod:x;}
inline ll power(ll x,ll y){
ll ans=1;
while(y){if(y&1)ans=ans*x%mod;x=x*x%mod;y>>=1;}
return ans;
}
inline ll C(int n,int m){return jie[n]*ni[m]%mod*ni[n-m]%mod;}
inline bool cmp(int a,int b){return a>b;}
int main(){
n=rd();m=rd();
for(int i=1;i<=m;++i)a[i]=rd();
sort(a+1,a+m+1,cmp);
int maxn=(1<<n);
for(int i=1;i<=maxn;++i)cnt[i]=cnt[i-(i&-i)]+1;
jie[0]=1;
for(int i=1;i<=maxn;++i)jie[i]=jie[i-1]*i%mod;
ni[maxn]=power(jie[maxn],mod-2);
for(int i=maxn-1;i>=0;--i)ni[i]=ni[i+1]*(i+1)%mod;
dp[0][0]=1;
for(int i=1;i<=m;++i)
for(int s=0;s<(1<<n);++s)if(dp[i-1][s]){
MOD(dp[i][s]+=dp[i-1][s]);
for(int j=0;j<n;++j)if(!(s&(1<<j))){
MOD(dp[i][s|(1<<j)]+=dp[i-1][s]*jie[1<<j]%mod*C(maxn-a[i]-s,(1<<j)-1)%mod);
}
}
ll ans=0;
for(int s=0;s<(1<<n);++s){
if(cnt[s]&1)MOD(ans=ans-dp[m][s]*jie[maxn-1-s]%mod+mod);
else MOD(ans=ans+dp[m][s]*jie[maxn-1-s]%mod);
}
printf("%lld\n",ans*maxn%mod);
return 0;
}
ARC093 F - Dark Horse的更多相关文章
- ARC093 F Dark Horse——容斥
题目:https://atcoder.jp/contests/arc093/tasks/arc093_d #include<cstdio> #include<cstring> ...
- ARC 093 F Dark Horse 容斥 状压dp 组合计数
LINK:Dark Horse 首先考虑1所在位置. 假设1所在位置在1号点 对于此时剩下的其他点的方案来说. 把1移到另外一个点 对于刚才的所有方案来说 相对位置不变是另外的方案. 可以得到 1在任 ...
- 【arc093f】Dark Horse(容斥原理,动态规划,状态压缩)
[arc093f]Dark Horse(容斥原理,动态规划,状态压缩) 题面 atcoder 有 \(2^n\) 名选手,编号为 \(1\) 至 \(2^n\) .现在这 \(2^n\) 名选手将进行 ...
- ARC093F Dark Horse 容斥原理+DP
题目传送门 https://atcoder.jp/contests/arc093/tasks/arc093_d 题解 由于不论 \(1\) 在哪个位置,一轮轮下来,基本上过程都是相似的,所以不妨假设 ...
- arc093F Dark Horse
我们可以假设1的位置在1,并且依次与右边的区间合并.答案最后乘上2^n即可. 那么需要考虑1所在的区间与另一个区间合并时,另一个区间的最小值不能为特殊的. 直接求解很难,考虑容斥,钦定在哪几个位置必定 ...
- [AtCoder ARC093F]Dark Horse
题目大意:有$2^n$个人,每相邻的两个人比赛一次.令两个人的编号为$a,b(a\leqslant b)$,若$a\neq 1$,则$a$的人获胜:否则若$b\in S$则$b$获胜,不然$1$获胜. ...
- ARC093F Dark Horse 【容斥,状压dp】
题目链接:gfoj 神仙计数题. 可以转化为求\(p_1,p_2,\ldots,p_{2^n}\),使得\(b_i=\min\limits_{j=2^i+1}^{2^{i+1}}p_j\)都不属于\( ...
- Atcoder Regular Contest 093 D - Dark Horse(组合数学+状压 dp)
Atcoder 题面传送门 & 洛谷题面传送门 常规题,简单写写罢((( 首先 \(1\) 的位置是什么不重要,我们不妨钦定 \(1\) 号选手最初就处在 \(1\) 号位置,最后答案乘个 \ ...
- Atcoder 乱做
最近感觉自己思维僵化,啥都不会做了-- ARC103 F Distance Sums 题意 给定第 \(i\) 个点到所有点的距离和 \(D_i\) ,要求构造一棵合法的树.满足第 \(i\) 个点到 ...
随机推荐
- Python_ONLINE_习题集_1 递归
1.1 使用递归实现:计算某个数的阶乘 def func(x): if x == 2: return 2 else: return x*func(x-1) a = func(4) print(a) 2 ...
- linux应用程序启动时加载库错误问题
ldd text查看依赖库 ln -s /lib64/libpcre.so.0 /usr/local/lib/libpcre.so做软连接
- [Jupyter Notebook] 01 这么多快捷键,我可顶不住!先记个八成吧
0. 一些说明 为了入门 Python3 安装了 Anaconda,它集成了 Jupyter Notebook 1. 调出快捷键表 打开 Jupyter Notebook,新建一个 Python3(我 ...
- oracle 实现mysql find_set_in函数
create or replace FUNCTION F_FIND_IN_SET(piv_str1 varchar2, piv_str2 varchar2, p_sep varchar2 := ',' ...
- [2019上海网络赛J题]Stone game
题目链接 CSLnb! 题意是求出给定集合中有多少个合法子集,合法子集的定义为,子集和>=总和-子集和$\& \&$子集和-(子集的子集和)<=总和-子集和. 其实就是很简 ...
- tensorflow学习笔记七----------卷积神经网络
卷积神经网络比神经网络稍微复杂一些,因为其多了一个卷积层(convolutional layer)和池化层(pooling layer). 使用mnist数据集,n个数据,每个数据的像素为28*28* ...
- [LeetCode] 140. 单词拆分 II
题目链接 : https://leetcode-cn.com/problems/word-break-ii/ 题目描述: 给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,在字符 ...
- Dire Wolf——HDU5115(区间DP)
题意 就是有一对狼,每个狼有初始的攻击力,并且还能给左右两边的狼提供攻击力加成,当冒险家杀死一头狼的时候他也会受到这个狼目前攻击力的伤害 实例解析 33 5 78 2 0 有三头狼,刚开始第二头狼给他 ...
- mysql,oracle,sql server数据库默认的端口号,端口号可以为负数吗?以及常用协议所对应的缺省端口号
mysql,oracle,sql server数据库默认的端口号? mysql:3306 Oracle:1521 sql server:1433 端口号可以为负吗? 不可以,端口号都有范围的,0~65 ...
- spring controller 方法测试
controller 测试 不使用其他api接口测试工具 一般而言,我们写好一个模块后,会对其进行单元测试,再集成到现有的系统中. 但是呢~针对Controller.Service.Dao三层来说,我 ...