分析

代码

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define mp make_pair
const int N = 7e4+;
const int M = 2e5;
int n,m,w,h,x[N],y[N],p[M],t[M],L[M],R[M],D[M],U[M];
int head[N],nxt[M],cnt,dis[N],vis[N];
multiset<pair<int,int> >d[M*];
priority_queue<pair<int,int> >q;
inline void update(int le,int ri,int wh,int pl,int id){
d[wh].insert(mp(y[id],id));
if(le==ri)return;
int mid=(le+ri)>>;
if(mid>=pl)update(le,mid,wh<<,pl,id);
else update(mid+,ri,wh<<|,pl,id);
}
inline void go(int le,int ri,int wh,int id,int k){
if(le>=L[id]&&ri<=R[id]){
multiset<pair<int,int> >::iterator it,a;
it=d[wh].lower_bound(mp(D[id],));
while((it!=d[wh].end())&&(it->fi<=U[id])){
int x=it->se;
if(!vis[x]){
vis[x]=,dis[x]=k;
for(int i=head[x];i;i=nxt[i])q.push(mp(-k-t[i],i));
}
a=it,it++,d[wh].erase(a);
}
return;
}
int mid=(le+ri)>>;
if(mid>=L[id])go(le,mid,wh<<,id,k);
if(mid<R[id])go(mid+,ri,wh<<|,id,k);
return;
}
int main(){
int i,j,k;
scanf("%d%d%d%d",&n,&m,&w,&h);
for(i=;i<=n;i++){
scanf("%d%d",&x[i],&y[i]);
update(,w,,x[i],i);
}
for(i=;i<=m;i++){
scanf("%d%d%d%d%d%d",&p[i],&t[i],&L[i],&R[i],&D[i],&U[i]);
nxt[i]=head[p[i]];head[p[i]]=i;
}
vis[]=;
for(i=head[];i;i=nxt[i])q.push(mp(-t[i],i));
while(!q.empty()){
int u=q.top().se,v=-q.top().fi;
q.pop();go(,w,,u,v);
}
for(i=;i<=n;i++)printf("%d\n",dis[i]);
return ;
}

p5471 [NOI2019]弹跳的更多相关文章

  1. 【题解】Luogu P5471 [NOI2019]弹跳

    原题传送门 先考虑部分分做法: subtask1: 暴力\(O(nm)\)枚举,跑最短路 subtask2: 吧一行的点压到vector中并排序,二分查找每一个弹跳装置珂以到达的城市,跑最短路 sub ...

  2. 洛谷 P5471 - [NOI2019] 弹跳(二维线段树优化建图+堆优化存边)

    题面传送门 一道非常有意思的题(大概可以这么形容?) 首先看到这类一个点想一个区域内连边的题目可以很自然地想到线段树优化建图,只不过这道题是二维的,因此需要使用二维线段树优化建图,具体来说,我们外层开 ...

  3. luogu P5471 [NOI2019]弹跳

    luogu 因为是一个点向矩形区域连边,所以可以二维数据结构优化连边,但是会MLE.关于维护矩形的数据结构还有\(KD-Tree\),所以考虑\(KDT\)优化连边,空间复杂度\(m\sqrt n\) ...

  4. [NOI2019] 弹跳

    题意: 给你平面上的$n$个点,共有$m$个弹跳装置. 每个弹跳装置可以从点$p_{i}$以$t_{i}$的代价跳到矩形$(L_{i},D_{i}),(R_{i},U_{i})$中的任何一个点. 现在 ...

  5. [NOI2019]弹跳(KD-Tree/四分树/线段树套平衡树 优化建图+Dijkstra)

    本题可以用的方法很多,除去以下三种我所知道的就还有至少三种. 方法一:类似线段树优化建图,将一个平面等分成四份(若只有一行或一列则等分成两份),然后跑Dijkstra即可.建树是$O(n\log n) ...

  6. luogu 5471 [NOI2019]弹跳 KDtree + Dijkstra

    题目链接 第一眼就是 $KDtree$ 优化建图然而,空间只有 $128mb$,开不下   时间不吃紧,考虑直接跑 $Dijkstra$ $Dijkstra$ 中存储的是起点到每个输入时给出的矩阵的最 ...

  7. [NOI2019]弹跳(KD-Tree)

    被jump送退役了,很生气. 不过切了这题也进不了队,行吧. 退役后写了一下,看到二维平面应该就是KD树,然后可以在KD树上做最短路,然后建立堆和KDTree.然后每次更新则是直接把最短路上的节点删掉 ...

  8. 题解 [NOI2019]弹跳

    题目传送门 题目大意 给出 \(n\) 做城市,每座城市都有横纵坐标 \(x,y\).现在给出 \(m\) 个限制 \(p,t,l,r,d,u\),表示从 \(p\) 城市出发,可以花费 \(t\) ...

  9. 【NOI2019】弹跳(KDT优化建图)

    Description 平面上有 \(n\) 个点,分布在 \(w \times h\) 的网格上.有 \(m\) 个弹跳装置,由一个六元组描述.第 \(i\) 个装置有参数:\((p_i, t_i, ...

随机推荐

  1. vue登录注册实践

    步骤一 1.安装脚手架:npm install vue-cli -g2.wepack生成html模版:vue init webpack ' 文件名'3.安装axios.js-cookie.elemen ...

  2. chapter2

    Chapter2 Tip1 静态工厂方法代替构造器 公有的静态方法,只是一个返回类实例的静态方法. 静态工厂方法的优势: 优势一: 有名称,如果构造器本身没有正确的描述被返回的对象,具有适当名称的静态 ...

  3. sql exist 和not exist(转载)

    exists : 强调的是是否返回结果集,不要求知道返回什么, 比如:  select name from student where sex = 'm' and mark exists(select ...

  4. css:设置div边框透明+渐变

    写作背景: 觅兼职--登陆页面,UI给的原型图很漂亮,其中有一个图要求div外面有一圈透明度为0.37且带有渐变的边框.效果图如下: 在写的时候遇到了一点小小的问题:无法给同一个div设置圆角的透明+ ...

  5. [Python3 填坑] 007 多才多艺的 len()

    目录 1. print( 坑的信息 ) 2. 开始填坑 (1) 总的来说 (2) 举例说明 (3) 后记 1. print( 坑的信息 ) 挖坑时间:2019/01/10 明细 坑的编码 内容 Py0 ...

  6. [19/05/14-星期二] HTML_body标签(列表标签和图片标签)

    一.列表标签 <!-- 快捷键 1.<meta charset="UTF-8"/> 用m6可直接写出 2.复制当前1行到下一行 ctrl+shift+R --&g ...

  7. canvas画随机的四位验证码

    效果图如下: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...

  8. 关于webpack高版本向低版本切换 如何切换?

    卸载:npm uninstall webpack -g 重新安装:npm install webpack@3.7.1 -g 直接安装指定版本就行了,如安装 2.4.1 版:cnpm install w ...

  9. EwoMail 邮件服务器安装

    ewomail 安装及使用 主页:http://www.ewomail.com/ 开源版主页:http://www.ewomail.com/list-9.html 开源版文档:http://doc.e ...

  10. eclipse 代码提示快捷键 alt+/

    eclipse (ALT+/)1.选择Eclipse菜单栏中的Window->preferences: 2.选择General->keys; 3.在右侧中间的窗体中点击word compl ...