首先很容易想到暴力DP

设状态f[i][j]表示当前放了第i个数,最大的数为j的方案数。

然后根据转移推出实际上是在下图走路的方案数

\[\left( \left( \begin{matrix}
x + y - 2 \\ x - 1
\end{matrix} \right)-
\left( \begin{matrix}
x+y-2 \\ x-2
\end{matrix} \right) \right) \times
\left(\left( \begin{matrix}
2n-x-y \\ n-x
\end{matrix} \right)-
\left( \begin{matrix}
2n-x-y \\ n-x+1
\end{matrix} \right) \right)
\]

注意:

以上情况是 \(x \leq y\) 的情况,对于\(x > y\)的情况,显然需要处理,

由于该图的对称性,我们珂以轻易地

将 \(x\) 变换为 \(n - x - 1\);

将 \(y\) 变换为 \(n - y - 1\)。

#include <cstdio>
#define MOD 1000000007 namespace fast_IO{
const int IN_LEN = 10000000, OUT_LEN = 10000000;
char ibuf[IN_LEN], obuf[OUT_LEN], *ih = ibuf + IN_LEN, *oh = obuf, *lastin = ibuf + IN_LEN, *lastout = obuf + OUT_LEN - 1;
inline char getchar_(){return (ih == lastin) && (lastin = (ih = ibuf) + fread(ibuf, 1, IN_LEN, stdin), ih == lastin) ? EOF : *ih++;}
inline void putchar_(const char x){if(oh == lastout) fwrite(obuf, 1, oh - obuf, stdout), oh = obuf; *oh ++= x;}
inline void flush(){fwrite(obuf, 1, oh - obuf, stdout);}
int read(){
int x = 0; char ch = ' ';
while (ch < '0' || ch > '9') ch = getchar_();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar_(); return x;
}
void write(int x){
if (x < 0) putchar_('-'), x = -x;
if (x > 9) write(x / 10);
putchar_(x % 10 + '0');
}
} using namespace fast_IO; long long fc[20000005]; long long ksm(long long a, long long b){
long long res = 1;
for ( ; b; b >>= 1, a = (a * a) % MOD)
if (b & 1) res = (res * a) % MOD;
return res;
} long long getC(int a, int b){
return fc[b] * ksm(fc[b - a], MOD - 2) % MOD * ksm(fc[a], MOD - 2) % MOD;
} int main(){
fc[0] = fc[1] = 1;
for (register int i = 2; i <= 20000000; ++i)
fc[i] = fc[i - 1] * i % MOD;
int T = read();
while (T--){
long long n = read(), x = read(), y = read();
if (x > y){
x = n - x + 1;
y = n - y + 1;
}
long long res = (getC(x - 1, x + y - 2) - getC(x - 2, x + y - 2))
* (getC(n - x, 2 * n - x - y) - getC(n - x + 1, 2 * n - x - y)) % MOD;
(res < 0) && (res += MOD);
write(res), putchar_('\n');
}
flush(); return 0;
}

[HG]提高组 题解的更多相关文章

  1. noip2010提高组题解

    NOIP2010提高组题解 T1:机器翻译 题目大意:顺序输入n个数,有一个队列容量为m,遇到未出现元素入队,求入队次数. AC做法:直接开1000的队列模拟过程. T2:乌龟棋 题目大意:有长度为n ...

  2. NOIP 2014 提高组 题解

    NOIP 2014 提高组 题解 No 1. 生活大爆炸版石头剪刀布 http://www.luogu.org/problem/show?pid=1328 这是道大水题,我都在想怎么会有人错了,没算法 ...

  3. NOIP 2001 提高组 题解

    NOIP 2001 提高组 题解 No 1. 一元三次方程求解 https://vijos.org/p/1116 看见有人认真推导了求解公式,然后猥琐暴力过的同学们在一边偷笑~~~ 数据小 暴力枚举即 ...

  4. NOIP 2000 提高组 题解

    NOIP2000 提高组 题解 No 1. 进制转换 https://www.rqnoj.cn/problem/295 水题 对于n和基数r, 每次用n mod r, 把余数按照逆序排列 注意 mod ...

  5. 【NOIP2018】提高组题解

    [NOIP2018]提高组题解 其实就是把写过的打个包而已 道路铺设 货币系统 赛道修建 旅行 咕咕咕 咕咕咕

  6. noip2009提高组题解

    NOIP2009题解 T1:潜伏者 题目大意:给出一段密文和破译后的明文,一个字母对应一个密文字母,要求破译一段密文,如果有矛盾或有未出现密文无法破译输出failed,否则输出明文. 思路:纯模拟题 ...

  7. noip2008提高组题解

    第一题:笨小猴 模拟   第二题:火柴棒等式 搜索 深搜不用说,确定出两个加数然后判断能否拼出等式. 枚举确实不太好搞,因为枚举范围不确定,太大了容易超时,太小了容易漏解.不过这题的数据貌似很温和,我 ...

  8. noip2007提高组题解

    题外话:这一年的noip应该是最受大众关心的,以至于在百度上输入noip第三个关键字就是noip2007.主要是由于这篇文章:http://www.zhihu.com/question/2110727 ...

  9. noip2002提高组题解

    再次280滚粗.今天早上有点事情,所以做题的时候一直心不在焉,应该是三天以来状态最差的一次,所以这个分数也还算满意了.状态真的太重要了. 第一题:均分纸牌 贪心.(昨天看BYVoid的noip2001 ...

随机推荐

  1. requests库爬取豆瓣热门国产电视剧数据并保存到本地

    首先要做的就是去豆瓣网找对应的接口,这里就不赘述了,谷歌浏览器抓包即可,然后要做的就是分析返回的json数据的结构: https://movie.douban.com/j/search_subject ...

  2. Android渐变色xml配置

    这里渐变色: <?xml version="1.0" encoding="utf-8"?> <shape xmlns:android=&quo ...

  3. MySQL创表--分页--自关联--

    创建表book create table t_book( id int unsigned auto_increment primary key, bookName varchar(255) defau ...

  4. O010、动手实践虚拟网络

    参考https://www.cnblogs.com/CloudMan6/p/5296573.html   本节将演示如何在实验环境中实现下图所示的虚拟网络  

  5. kinit: Bad encryption type while getting initial credentials

    描述:RHEL 6.x主机执行kinit -kt命令报如下错误 [heboan@localhost~]$ kinit -kt heboan.keytab heboan kinit: Bad encry ...

  6. 转载:elasticsearch入门篇

    转自:https://www.cnblogs.com/hello-shf/p/11543408.html elasticsearch入门篇   elasticsearch专栏:https://www. ...

  7. Hyperledger Fabric(2)共识与交易

    Fabric 的网络节点本质上是互相复制的状态机,节点之间需要保持相同的账本状态.为了实现这个目的,各个节点需要通过共识( consensus )过程,对账本状态的变化达成一致性的认同. Fabric ...

  8. Redis简介,应用场景,优势

    Redis简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的持久化 ...

  9. 【异常】org.apache.hadoop.hbase.client.RetriesExhaustedException: Failed after attempts=36, exceptions:

    1 Phoenix远程无法连接但是本地可以连接,详细异常 SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found bindin ...

  10. DHCP服务部署

    目录 DHCP服务部署 一. 简介 二. 用途及功能 三. 原理+示意图 四. 实战搭建 相关文件 配置基础DHCP服务器 配置DHCP保留地址 配置DHCP超级作用域 配置DHCP中继 五. 小结 ...