官方文档:http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html

使用 sklearn.preprocessing.PolynomialFeatures 这个类可以进行特征的构造,构造的方式就是特征与特征相乘(自己与自己,自己与其他人),这种方式叫做使用多项式的方式。
例如:有 \(a\)、\(b\) 两个特征,那么它的 2 次多项式的次数为 \([1, a, b, a^2, ab, b^2]\)。

PolynomialFeatures 这个类有 3 个参数:

  • degree:控制多项式的次数;
  • interaction_only:默认为 False,如果指定为 True,那么就不会有特征自己和自己结合的项,组合的特征中没有 \(a^2\) 和 \(b^2\);
  • include_bias:默认为 True 。如果为 True 的话,那么结果中就会有 0 次幂项,即全为 1 这一列。

  • interaction_only 的意思是,得到的组合特征只有相乘的项,没有平方项。
  • interaction_only 设置成 True 的意思是: 例如 \([a, b]\) 的多项式交互式输出 \([1, a, b, ab]\)。
  • include_bias 设置 0 次幂那一列是否要。

sklearn 的 PolynomialFeatures 的用法的更多相关文章

  1. sklearn中predict_proba的用法例子(转)

    predict_proba返回的是一个n行k列的数组,第i行第j列上的数值是模型预测第i个预测样本的标签为j的概率.所以每一行的和应该等于1. 举个例子 >>> from sklea ...

  2. 使用sklearn优雅地进行数据挖掘【转】

    目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回 ...

  3. 使用sklearn优雅地进行数据挖掘

    目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回 ...

  4. 【转】使用sklearn优雅地进行数据挖掘

    这里是原文 目录 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术并行处理 并行处理 2.1 整体并行处理 2.2 部分并行处理流水线处理自动化调参持久化回顾 ...

  5. 转载:使用sklearn进行数据挖掘

    目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回 ...

  6. 【转载】使用sklearn优雅地进行数据挖掘

    原文:http://www.cnblogs.com/jasonfreak/p/5448462.html 目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键 ...

  7. klearn.preprocessing.PolynomialFeatures学习

    多项式特征处理 class sklearn.preprocessing.PolynomialFeatures(degree=2, interaction_only=False, include_bia ...

  8. sklearn学习笔记之简单线性回归

    简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...

  9. 使用sklearn进行数据挖掘

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

随机推荐

  1. 洛谷 P1073 最优贸易 题解

    题面 大家都是两遍SPFA吗?我这里就一遍dp啊: 首先判断对于一个点u,是否可以从一号点走到这里,并且可以从u走到n号点: 对于这样的点我们打上标记: 那么抛出水晶球的点一定是从打上标记的点中选出一 ...

  2. APT高持续渗透攻击-后门篇

    APT是指高级持续性威胁, 利用先进的攻击手段对特定目标进行长期持续性网络攻击的攻击形式,APT攻击的原理相对于其他攻击形式更为高级和先进,其高级性主要体现在APT在发动攻击之前需要对攻击对象的业务流 ...

  3. 利用aopc创建schema失败

    执行neo4j-graph-algorithms的例子,运行以下代码报错: CALL apoc.schema.assert( {Category:['name']}, {Business:['id'] ...

  4. 已知两个int变量a、b,定义4个方法分别对变量a、b进行加减乘除运算,并测试结果。

    package com.fs.test; public class Test { public void aMethod(int a, int b) { int add = a + b;//*表示加法 ...

  5. pycharm解释器链接如何pymongo

    1.pymongo 链接数据库 # pycharm 链接我们的mogodb # 下载pymongo from pymongo import MongoClient # 客户端请求 服务端 # 链接 c ...

  6. Windows PyCharm QtDesigner/pyuic5配置

    QtDesigner 配置成功截图如下: C:\ProgramData\Anaconda3\Library\bin\designer.exe $FileDir$ pyuic5 配置成功截图如下: C: ...

  7. python之堆排序算法代码

    以下是个人写的堆排序代码,原理我就不解释了(简单来说就是先建立一个大顶堆,然后进行顶点和最后节点的互换,互换之后需要重新建堆,两两比对,具体的话可以参照其他的,不过代码还是会于注释的. #根据问题进行 ...

  8. 开发规范总结-java代码

    java8新特性: 开发的时候适当用一些新特性的语法,可以使代码更简洁.譬如List根据某个属性转map.stream.函数式编程.lambda表达式 有一种场景:两个list一个转map 两个lis ...

  9. mybatis 的 DefaultVFS 日志乱码问题

    mybatis 的 DefaultVFS 日志乱码问题 mybatis  DefaultVFS 乱码  1. 问题描述 今天在启动同事搭建的工程时,发现 console 中乱码,细看下,是 mybat ...

  10. 关于 html button 点击刷新页面的问题

    如果不想点击button 刷新页面的话,需要加个属性   type="button" 如下: <button class="layui-btn" type ...