Python实现——一元线性回归(梯度下降法)
2019/3/25
一元线性回归——梯度下降/最小二乘法又名:一两位小数点的悲剧
感觉这个才是真正的重头戏,毕竟前两者都是更倾向于直接使用公式,而不是让计算机一步步去接近真相,而这个梯度下降就不一样了,计算机虽然还是跟从现有语句/公式,但是在不断尝试中一步步接近目的地。
简单来说,梯度下降的目的在我看来还是要到达两系数的偏导数函数值为零的取值,因此,我们会从“任意一点”开始不断接近,由于根据之前最小二乘法的推导,可以说方差的公式应该算一个二次函数...?总之,这么理解的话就算只用中学知识也能知道在导数值为0时求得最大/小值。
那么就很简单了,我们让a,b一点点接近就可以了,而逼近的过程十分有趣,且巧妙。当前点的导数值如果为正,说明该点的横坐标需要左移,而为负则需要右移(为0就胜利了),因此根据这个特性我们可以直接设定为以下python代码:
a=a-n*get_pa(c,d)
b=b-n*get_pb(c,d)
其中,get_pa()以及get_pb()对应的分别为a或b求偏导数值,以a,b两个值为输入值,而n则是非常重要的调节系数,重要到让我无法正常运行程序,后文会着重提及。
运用到了正减,负增,通过减法实现,很巧妙【来自于Coursera的华盛顿大学“机器学习:回归”课程的想法
接下来,还是先给出求方差,求偏导的函数。
求方差:
def get_sqm(a,b):
sqm=0
for i in range(100):
sqm=sqm+(cols2[i]-a-b*cols1[i])*(cols2[i]-a-b*cols1[i])
return sqm
求a,b的偏导:
def get_pa(a,b):
pa=0
for i in range(100):
pa=pa-2*(cols2[i]-a-b*cols1[i])
return pa
def get_pb(a,b):
pb=0
for i in range(100):
pb=pb-2*cols1[i]*(cols2[i]-a-b*cols1[i])
return pb
好像...也没有太多可说的?那就迫不及待的进入正题吧!来自于我被调节系数n折磨的一整个下午的怨念!其实主题的循环函数并不是那么难理解和构建,我很早就完成了:
while abs(get_pa(a,b))>=10 and abs(get_pb(a,b))>=10 :
c=a
d=b
a=a-n*get_pa(c,d)
b=b-n*get_pb(c,d)
print(get_sqm(a,b))
偏导数的限制...我取了10...看起来很惊悚,但也是没办法,被吓得,只能松一点了。
简单来说就是不断调整两个系数取值,而且最终要的,也是我用临时变量c,d的原因,a,b要同时调整,或者说,在当前情况下,由于两偏导数都是既有a又有b的,牵一发而动全身,调完一个另一个也有了变化,不再准确,也不是之前的那个对应点的偏导数值了。
同时,n的存在也非常重要,它是外部限制调节幅度的方式,而它的取值又非常玄学,没有一个定论......对于不同的数据有不同的措施,在Coursera上建议的0.1把我坑惨了。
使用0.1,最后只会给我两个蓝蓝的“nan”,大概是python中的某一个错误表达吧,反正我一直以为我代码有问题,直到晚上才随手灵机一动,加了几个0,然后——就成功了...
【太过于戏剧性了,我的焦虑完全一笔带过
在同时我也打印出当前的方差,若是n取0.0001,则显示出的数据为大约又450多行,象征性的表示一下
59842.51109094548
44733.39899894902
...
27787.81855782964
27787.002777912836
能感受到前后变化的差距,最后的a,b值也不错,差别不大【偏导数限制在10好像也没什么大关系...
最小二乘法公式法
a=-22.63450339669057 b=13.449314363947979梯度下降(n=0.0001,偏导数约束为10)
a=-21.128787257903344 b=13.281329019963474梯度下降(n=0.0001,偏导数约束为1)
a=-22.48409512730926 b=13.432534053091723梯度下降(n=0.00001,偏导数约束为1)
a=-22.483484868708103 b=13.432465969541052
目前来看,下降偏导数约束带来的提升可能比调整系数的下降来的多?不过毕竟直接从10减到了1,幅度比n的变化不知道大了多少。
n=0.0001,少一个0,就会有俩“nan”看着我,气
由于图像上的差异并不大所以就用n=0.00001,偏导数约束为1的图像吧,不能让它白跑那么久:

用的还是这个更像二次的数据,凑合看吧。
这里给出完整代码:
import xlrd
import xlwt
import sympy as sp
import matplotlib.pyplot as plt
import numpy as np
workbook=xlrd.open_workbook(r'1.xls')
sheet=workbook.sheet_by_index(0)
cols1=sheet.col_values(0) #获取第一列
cols2=sheet.col_values(1) #获取第二列
#a+bx
#a=sp.Symbol('a')
#b=sp.Symbol('b')
#已知a=-22.63450339669057 b=13.449314363947979
def get_sqm(a,b):
sqm=0
for i in range(100):
sqm=sqm+(cols2[i]-a-b*cols1[i])*(cols2[i]-a-b*cols1[i])
return sqm
def get_pa(a,b):
pa=0
for i in range(100):
pa=pa-2*(cols2[i]-a-b*cols1[i])
return pa
def get_pb(a,b):
pb=0
for i in range(100):
pb=pb-2*cols1[i]*(cols2[i]-a-b*cols1[i])
return pb
n=0.00001
a=0.0
b=0.0
while abs(get_pa(a,b))>=1 and abs(get_pb(a,b))>=1 :
c=a
d=b
a=a-n*get_pa(c,d)
b=b-n*get_pb(c,d)
print(get_sqm(a,b))
print(a,b)
plt.scatter(cols1,cols2,color = 'blue')
x=np.linspace(0,15,100)
y=b*x+a
plt.plot(x,y,color="red")
plt.show()
就先这样,草草结束了先...?
Python实现——一元线性回归(梯度下降法)的更多相关文章
- python实现简单的梯度下降法
代码如下: # 梯度下降法模拟 import numpy as np import matplotlib.pyplot as plt plot_x = np.linspace(-1,6,141) # ...
- Python实现——一元线性回归(最小二乘法)
2019/3/24 线性回归--最小二乘法公式法 暂时用python成功做出来了图像,但是其中涉及到的公式还是更多的来自于网络,尤其是最小二乘法公式中的两个系数的求解,不过目前看了下书高数也会马上提及 ...
- 梯度下降法及一元线性回归的python实现
梯度下降法及一元线性回归的python实现 一.梯度下降法形象解释 设想我们处在一座山的半山腰的位置,现在我们需要找到一条最快的下山路径,请问应该怎么走?根据生活经验,我们会用一种十分贪心的策略,即在 ...
- 最小二乘法 及 梯度下降法 分别对存在多重共线性数据集 进行线性回归 (Python版)
网上对于线性回归的讲解已经很多,这里不再对此概念进行重复,本博客是作者在听吴恩达ML课程时候偶然突发想法,做了两个小实验,第一个实验是采用最小二乘法对数据进行拟合, 第二个实验是采用梯度下降方法对数据 ...
- 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...
- 梯度下降法的python代码实现(多元线性回归)
梯度下降法的python代码实现(多元线性回归最小化损失函数) 1.梯度下降法主要用来最小化损失函数,是一种比较常用的最优化方法,其具体包含了以下两种不同的方式:批量梯度下降法(沿着梯度变化最快的方向 ...
- 梯度下降法实现最简单线性回归问题python实现
梯度下降法是非常常见的优化方法,在神经网络的深度学习中更是必会方法,但是直接从深度学习去实现,会比较复杂.本文试图使用梯度下降来优化最简单的LSR线性回归问题,作为进一步学习的基础. import n ...
- 简单线性回归(梯度下降法) python实现
grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...
- 最小二乘法 及 梯度下降法 运行结果对比(Python版)
上周在实验室里师姐说了这么一个问题,对于线性回归问题,最小二乘法和梯度下降方法所求得的权重值是一致的,对此我颇有不同观点.如果说这两个解决问题的方法的等价性的确可以根据数学公式来证明,但是很明显的这个 ...
随机推荐
- STM32使用无源蜂鸣器演奏歌曲
上一次使用了有源蜂鸣器,只能发出固定的”滴滴“声,当然不能满足于此呀.使用无源蜂鸣器,只要输出不同频率的PWM波,即可发出不同的音符. 不同的音符组合起来就是一个曲子了. 改变PWM的音调,可以输出D ...
- jenkins容器权限被拒绝
问题,我们从官网上面pull下jenkins后,如果直接运行容器的没问题 docker run -d -p 8080:8080 -v jenkins:latest 不过我们可能需要映射下容器内部的地址 ...
- POJ1012(约瑟夫问题)
1.题目链接地址 http://poj.org/problem?id=1012 2k个人,前面k个是好人,后面k个是坏人,找一个数t,每数到第t时就去掉,使所有坏人在好人之前被杀掉. 思路:约瑟夫公式 ...
- Java多线程-新特征-信号量Semaphore
简介信号量(Semaphore),有时被称为信号灯,是在多线程环境下使用的一种设施, 它负责协调各个线程, 以保证它们能够正确.合理的使用公共资源. 概念Semaphore分为单值和多值两种,前者只能 ...
- php_imagick超强的PHP图片处理扩展
php_imagick是一个可以供PHP调用ImageMagick功能的PHP扩展,使用这个扩展可以使PHP具备和ImageMagick相同的功能. ImageMagick是一套功能强大.稳定而且 ...
- 16-math_M_PI
头文件math.h中宏定义的是M_PI#define M_PI 3.14159265358979323846所以不需要记忆PI的值了可以直接用
- Luogu 3665 [USACO17OPEN]Switch Grass 切换牧草
BZOJ 4777 被权限了. 这道题的做法看上去不难,但是感觉自己yy不出来. 首先是两个结论: 1.答案一定是连接着两个异色点的一条边. 2.答案一定在最小生成树上. 感觉看到了之后都比较显然,自 ...
- zigbee之MAC地址发送
TI cc2530在出厂时候每一个芯片都固化了一个唯一的8个字节的地址,MAC或者IEEE地址. 协调器模块的MAC地址为:0x00124B000716550F(注意自己的是多少!!) 终端的MAC地 ...
- hdu4643 GSM
#include<stdio.h> #include<math.h> #define Max 55 #define eps 1e-8 int n,m; struct Point ...
- SVG素材整理(原)
why SVG? 1.矢量的国际图形标准,以后随着浏览器的发展,相信矢量会更多的出现 2.illustartor等多数矢量绘图软件可以导出为这种格式 so SVG现状 基本介绍:http:// ...