CodeForces - 138C: Mushroom Gnomes - 2 (线段树&概率&排序)
One day Natalia was walking in the woods when she met a little mushroom gnome. The gnome told her the following story:
Everybody knows that the mushroom gnomes' power lies in the magic mushrooms that grow in the native woods of the gnomes. There are n trees and m magic mushrooms in the woods: the i-th tree grows at a point on a straight line with coordinates ai and has the height of hi, the j-th mushroom grows at the point with coordinates bj and has magical powers zj.
But one day wild mushroommunchers, the sworn enemies of mushroom gnomes unleashed a terrible storm on their home forest. As a result, some of the trees began to fall and crush the magic mushrooms. The supreme oracle of mushroom gnomes calculated in advance the probability for each tree that it will fall to the left, to the right or will stand on. If the tree with the coordinate x and height h falls to the left, then all the mushrooms that belong to the right-open interval [x - h, x), are destroyed. If a tree falls to the right, then the mushrooms that belong to the left-open interval (x, x + h] are destroyed. Only those mushrooms that are not hit by a single tree survive.
Knowing that all the trees fall independently of each other (i.e., all the events are mutually independent, and besides, the trees do not interfere with other trees falling in an arbitrary direction), the supreme oracle was also able to quickly calculate what would be the expectation of the total power of the mushrooms which survived after the storm. His calculations ultimately saved the mushroom gnomes from imminent death.
Natalia, as a good Olympiad programmer, got interested in this story, and she decided to come up with a way to quickly calculate the expectation of the sum of the surviving mushrooms' power.
Input
The first line contains two integers n and m (1 ≤ n ≤ 105, 1 ≤ m ≤ 104) — the number of trees and mushrooms, respectively.
Each of the next n lines contain four integers — ai, hi, li, ri (|ai| ≤ 109, 1 ≤ hi ≤ 109, 0 ≤ li, ri, li + ri ≤ 100) which represent the coordinate of the i-th tree, its height, the percentage of the probabilities that the tree falls to the left and to the right, respectively (the remaining percentage is the probability that the tree will stand on).
Each of next m lines contain two integers bj, zj (|bj| ≤ 109, 1 ≤ zj ≤ 103) which represent the coordinate and the magical power of the j-th mushroom, respectively.
An arbitrary number of trees and mushrooms can grow in one point.
Output
Print a real number — the expectation of the total magical power of the surviving mushrooms. The result is accepted with relative or absolute accuracy 10 - 4.
Examples
1 1
2 2 50 50
1 1
0.5000000000
2 1
2 2 50 50
4 2 50 50
3 1
0.2500000000
题意:现在有N棵树,M棵蘑菇,每棵树给出位置Ai,高度Hi,以及倒左边的概率Li,覆盖区间[Ai-Hi,Ai)倒右边的概率Ri,覆盖区间为(Ai,Ai+Hi],没棵蘑菇有一定的价值,如果蘑菇被一颗或者多棵树覆盖,则其价值为0,现在问最终这么蘑菇价值的期望。
思路:蘑菇之间没有影响,单独考虑其价值的贡献,很显然我们可以用线段树来表示覆盖情况,每次下推对应区间1-P的概率,代表不被其覆盖的概率。
最终每个蘑菇*不被覆盖的概率即可。现在我们用排序来做这个题:
引申:我们已经见过很多次这样的题,有多个线段[Li,Ri],现在问这些线段覆盖了多少个点,我们可以把每个线段拆成两个端点(Li,-1),(Ri+1,1),然后排序blabla。省去了用线段树模拟的过程。 此题一样可以这样搞。
把每个线段拆成左闭右开的区间,然后排序,如果遇到左端点P*=0.01*(100-p),遇到右端点则P/=0.01*(100-p);但是这样一直除或者一直乘,会误差越来越大(比如有多个左端点在0除,会一直除.....),所以我们记录每个p的个数。最后再快速幂累乘。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define F first
#define S second
using namespace std;
const int maxn=;
pii a[maxn],b[maxn]; int tot,cnt[];
double qpow(double a,int x){
double res=1.0; while(x){
if(x&) res=res*a;
a=a*a; x>>=;
}return res;
}
int main()
{
int N,M,i,j,A,H,L,R;
scanf("%d%d",&N,&M);
rep(i,,N){
scanf("%d%d%d%d",&A,&H,&L,&R);
b[++tot]=mp(A-H,L); b[++tot]=mp(A,-L); //左闭右开
b[++tot]=mp(A+,R); b[++tot]=mp(A+H+,-R);
}
rep(i,,M) scanf("%d%d",&a[i].F,&a[i].S);
sort(a+,a+M+); sort(b+,b+tot+);
double ans=; int pos=;
rep(i,,M){
while(pos<=tot&&b[pos].F<=a[i].F){
if(b[pos].S>) cnt[b[pos].S]++;
if(b[pos].S<) cnt[-b[pos].S]--;
pos++;
}
if(!cnt[]){
double p=a[i].S;
rep(j,,) p*=qpow(0.01*(-j),cnt[j]);
ans+=p;
}
}
printf("%.12lf\n",ans);
return ;
}
CodeForces - 138C: Mushroom Gnomes - 2 (线段树&概率&排序)的更多相关文章
- Codeforces 138C Mushroom Gnomes - 2 线段树
Mushroom Gnomes - 2 感觉没啥东西, 用线段树算算每个被覆盖的概率, 坑点是有很多个在同一个点. #include<bits/stdc++.h> #define LL l ...
- Codeforces 588E. A Simple Task (线段树+计数排序思想)
题目链接:http://codeforces.com/contest/558/problem/E 题意:有一串字符串,有两个操作:1操作是将l到r的字符串升序排序,0操作是降序排序. 题解:建立26棵 ...
- codeforces Good bye 2016 E 线段树维护dp区间合并
codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...
- codeforces 22E XOR on Segment 线段树
题目链接: http://codeforces.com/problemset/problem/242/E E. XOR on Segment time limit per test 4 seconds ...
- Codeforces Gym 100803G Flipping Parentheses 线段树+二分
Flipping Parentheses 题目连接: http://codeforces.com/gym/100803/attachments Description A string consist ...
- Codeforces GYM 100114 D. Selection 线段树维护DP
D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descriptio ...
- Codeforces 444C DZY Loves Colors(线段树)
题目大意:Codeforces 444C DZY Loves Colors 题目大意:两种操作,1是改动区间上l到r上面德值为x,2是询问l到r区间总的改动值. 解题思路:线段树模板题. #inclu ...
- Codeforces 85D Sum of Medians(线段树)
题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...
- [Codeforces]817F. MEX Queries 离散化+线段树维护
[Codeforces]817F. MEX Queries You are given a set of integer numbers, initially it is empty. You sho ...
随机推荐
- easyPieChart 使用小记
在使用的时候本来想在获取数据的时候,再放入percent值,但死活不出来进度条条了,只能无奈设置默认100.求教有木正确方式? $("#demo-pie-1").attr(&quo ...
- 前端基础之JavaScript_(1)_ECMAScript
一.JavaScript概述 JavaScript的历史 992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中).后将其改名ScriptEase. ...
- [笔记] Access Control Lists (ACL) 学习笔记汇总
一直不太明白Windows的ACL是怎么回事,还是静下心来看一手的MSDN吧. [翻译] Access Control Lists [翻译] How Access Check Works Modify ...
- iOS 优化界面流畅度的探讨
界面流畅度 大都跟list scrollView有紧密关联 流畅的视觉:就是如丝般顺滑 不流畅视觉:”卡顿”,”抖动”,”迟顿感” 以上两种状态的描述 都是基于主观感觉,对于开发者来说 确实应该有一个 ...
- json教程系列(3)-JSONObject的过滤设置
我们通常对一个json串和java对象进行互转时,经常会有选择性的过滤掉一些属性值.例如下面的类: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...
- 用matlab将nc数据读出来,写成二进制文件,然后用grads画图
clear,clc nt=735;ny=73; %2.5*2.5格点的nx=144; %2.5*2.5格点的f=netcdf('air.mon.mean.nc','nowrite');tt ...
- linux中安装软件的集中方法
一.rpm包安装方式步骤: 引用:1.找到相应的软件包,比如soft.version.rpm,下载到本机某个目录:2.打开一个终端,su -成root用户:3.cd soft.version.rpm所 ...
- Java中ArrayList和LinkedList区别、ArrayList和Vector的区别
一般大家都知道ArrayList和LinkedList的大致区别: 1.ArrayList是实现了基于动态数组的数据结构,LinkedList基于链表的数据结构. 2.对于随机访问get和set,Ar ...
- BCM 交换机开发
转:http://blog.chinaunix.net/uid-23782786-id-3839602.html 前言: 最近搞这玩样,真是折腾,网上的资料都是片段,而且很少.折腾了4. ...
- [转载]Struts2.1.6+Spring2.5.6+Hibernate3.3.
原文地址:Struts2.1.6+Spring2.5.6+Hibernate3.3.1全注解实例详解(一)(转载大象)作者:沉睡森林 在JavaEE企业级开发中,以SSH2框架为核心的应用非常广,大 ...