One day Natalia was walking in the woods when she met a little mushroom gnome. The gnome told her the following story:

Everybody knows that the mushroom gnomes' power lies in the magic mushrooms that grow in the native woods of the gnomes. There are n trees and m magic mushrooms in the woods: the i-th tree grows at a point on a straight line with coordinates ai and has the height of hi, the j-th mushroom grows at the point with coordinates bj and has magical powers zj.

But one day wild mushroommunchers, the sworn enemies of mushroom gnomes unleashed a terrible storm on their home forest. As a result, some of the trees began to fall and crush the magic mushrooms. The supreme oracle of mushroom gnomes calculated in advance the probability for each tree that it will fall to the left, to the right or will stand on. If the tree with the coordinate x and height h falls to the left, then all the mushrooms that belong to the right-open interval [x - h, x), are destroyed. If a tree falls to the right, then the mushrooms that belong to the left-open interval (x, x + h] are destroyed. Only those mushrooms that are not hit by a single tree survive.

Knowing that all the trees fall independently of each other (i.e., all the events are mutually independent, and besides, the trees do not interfere with other trees falling in an arbitrary direction), the supreme oracle was also able to quickly calculate what would be the expectation of the total power of the mushrooms which survived after the storm. His calculations ultimately saved the mushroom gnomes from imminent death.

Natalia, as a good Olympiad programmer, got interested in this story, and she decided to come up with a way to quickly calculate the expectation of the sum of the surviving mushrooms' power.

Input

The first line contains two integers n and m (1 ≤ n ≤ 105, 1 ≤ m ≤ 104) — the number of trees and mushrooms, respectively.

Each of the next n lines contain four integers — aihiliri (|ai| ≤ 109, 1 ≤ hi ≤ 109, 0 ≤ li, ri, li + ri ≤ 100) which represent the coordinate of the i-th tree, its height, the percentage of the probabilities that the tree falls to the left and to the right, respectively (the remaining percentage is the probability that the tree will stand on).

Each of next m lines contain two integers bjzj (|bj| ≤ 109, 1 ≤ zj ≤ 103) which represent the coordinate and the magical power of the j-th mushroom, respectively.

An arbitrary number of trees and mushrooms can grow in one point.

Output

Print a real number — the expectation of the total magical power of the surviving mushrooms. The result is accepted with relative or absolute accuracy 10 - 4.

Examples

Input
1 1
2 2 50 50
1 1
Output
0.5000000000
Input
2 1
2 2 50 50
4 2 50 50
3 1
Output
0.2500000000

题意:现在有N棵树,M棵蘑菇,每棵树给出位置Ai,高度Hi,以及倒左边的概率Li,覆盖区间[Ai-Hi,Ai)倒右边的概率Ri,覆盖区间为(Ai,Ai+Hi],没棵蘑菇有一定的价值,如果蘑菇被一颗或者多棵树覆盖,则其价值为0,现在问最终这么蘑菇价值的期望。

思路:蘑菇之间没有影响,单独考虑其价值的贡献,很显然我们可以用线段树来表示覆盖情况,每次下推对应区间1-P的概率,代表不被其覆盖的概率。

最终每个蘑菇*不被覆盖的概率即可。现在我们用排序来做这个题:

引申:我们已经见过很多次这样的题,有多个线段[Li,Ri],现在问这些线段覆盖了多少个点,我们可以把每个线段拆成两个端点(Li,-1),(Ri+1,1),然后排序blabla。省去了用线段树模拟的过程。  此题一样可以这样搞。

把每个线段拆成左闭右开的区间,然后排序,如果遇到左端点P*=0.01*(100-p),遇到右端点则P/=0.01*(100-p);但是这样一直除或者一直乘,会误差越来越大(比如有多个左端点在0除,会一直除.....),所以我们记录每个p的个数。最后再快速幂累乘。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define F first
#define S second
using namespace std;
const int maxn=;
pii a[maxn],b[maxn]; int tot,cnt[];
double qpow(double a,int x){
double res=1.0; while(x){
if(x&) res=res*a;
a=a*a; x>>=;
}return res;
}
int main()
{
int N,M,i,j,A,H,L,R;
scanf("%d%d",&N,&M);
rep(i,,N){
scanf("%d%d%d%d",&A,&H,&L,&R);
b[++tot]=mp(A-H,L); b[++tot]=mp(A,-L); //左闭右开
b[++tot]=mp(A+,R); b[++tot]=mp(A+H+,-R);
}
rep(i,,M) scanf("%d%d",&a[i].F,&a[i].S);
sort(a+,a+M+); sort(b+,b+tot+);
double ans=; int pos=;
rep(i,,M){
while(pos<=tot&&b[pos].F<=a[i].F){
if(b[pos].S>) cnt[b[pos].S]++;
if(b[pos].S<) cnt[-b[pos].S]--;
pos++;
}
if(!cnt[]){
double p=a[i].S;
rep(j,,) p*=qpow(0.01*(-j),cnt[j]);
ans+=p;
}
}
printf("%.12lf\n",ans);
return ;
}

CodeForces - 138C: Mushroom Gnomes - 2 (线段树&概率&排序)的更多相关文章

  1. Codeforces 138C Mushroom Gnomes - 2 线段树

    Mushroom Gnomes - 2 感觉没啥东西, 用线段树算算每个被覆盖的概率, 坑点是有很多个在同一个点. #include<bits/stdc++.h> #define LL l ...

  2. Codeforces 588E. A Simple Task (线段树+计数排序思想)

    题目链接:http://codeforces.com/contest/558/problem/E 题意:有一串字符串,有两个操作:1操作是将l到r的字符串升序排序,0操作是降序排序. 题解:建立26棵 ...

  3. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

  4. codeforces 22E XOR on Segment 线段树

    题目链接: http://codeforces.com/problemset/problem/242/E E. XOR on Segment time limit per test 4 seconds ...

  5. Codeforces Gym 100803G Flipping Parentheses 线段树+二分

    Flipping Parentheses 题目连接: http://codeforces.com/gym/100803/attachments Description A string consist ...

  6. Codeforces GYM 100114 D. Selection 线段树维护DP

    D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descriptio ...

  7. Codeforces 444C DZY Loves Colors(线段树)

    题目大意:Codeforces 444C DZY Loves Colors 题目大意:两种操作,1是改动区间上l到r上面德值为x,2是询问l到r区间总的改动值. 解题思路:线段树模板题. #inclu ...

  8. Codeforces 85D Sum of Medians(线段树)

    题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...

  9. [Codeforces]817F. MEX Queries 离散化+线段树维护

    [Codeforces]817F. MEX Queries You are given a set of integer numbers, initially it is empty. You sho ...

随机推荐

  1. python并发编程之多进程2-(数据共享及进程池和回调函数)

    一.数据共享 1.进程间的通信应该尽量避免共享数据的方式 2.进程间的数据是独立的,可以借助队列或管道实现通信,二者都是基于消息传递的. 虽然进程间数据独立,但可以用过Manager实现数据共享,事实 ...

  2. Java进阶学习:将文件上传到七牛云中

    Java进阶学习:将文件上传到七牛云中 通过本文,我们将讲述如何利用七牛云官方SDK,将我们的本地文件传输到其存储空间中去. JavaSDK:https://developer.qiniu.com/k ...

  3. php......留言板

    部门内部留言板 一.语言和环境 实现语言 PHP 二.要求: 本软件是作为部门内员工之间留言及发送消息使用. 系统必须通过口令验证,登录进入.方法是从数据库内取出用户姓名和口令的数据进行校验. 用户管 ...

  4. third application :Directions widget

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  5. Android开发之旅-获取地理位置的经度和纬度

    在Android应用程序中,可以使用LocationManager来获取移动设备所在的地理位置信息.看如下实例:新建android应用程序TestLocation. 1.activity_main.x ...

  6. STP生成树协议原理与算法解析

    转:https://wenku.baidu.com/view/2e52b91d866fb84ae45c8d34.html

  7. level-4

    [1.网页乱码的问题是如何产生的.怎么样解决?] 造成html网页乱码原因主要是html源代码内中文字内容与html编码不同造成.主要情况有以下三种: 1.比如网页源代码是gbk的编码,而内容中的中文 ...

  8. Mysql主从复制原理详解

    一.为什么要做主从同步 1.读写分离,降低对主数据库的IO消耗 2.避免数据丢失 3.提高业务系统性能 二.主从同步和集群的区别 1.主从同步 一般需要两台及以上数据库服务器即可(一台用于写入数据,一 ...

  9. Shell脚本实现SSH免密登录及批量配置管理

    本节索引 场景分析 ssh免密登录 pssh工具批量管理 SHELL自动化脚本 本篇总结 场景分析 作为一个运维工程师,不是每个人工作的环境都想阿里.腾讯那样,动不动就上亿的PV量,上万台服务器.我们 ...

  10. web容器调用Filter和Servlet顺序学习

    web容器调用Filter和Servlet顺序学习    一直对Filter和Servlet在哪里被web容器调用迷惑,后查看tomcat源码,揭开了其面纱.1. 下面是一个简单的时序图: 2. 对上 ...