题目链接

BZOJ1513

题解

真正地理解了一波线段树标记永久化的姿势

每个节点维护两个值\(v\)和\(tag\)

\(v\)代表儿子中的最值

\(tag\)代表未下传的最值

显然节点的区间大于等于\(v\)的实际区间

而\(tag\)的区间包含节点的区间

我们在修改的时候,沿路\(v\)都要修改,底层\(tag\)修改

我们在查询的时候,沿路\(tag\)都要查询,底层\(v\)查询

\(upd:\)理解层面上看,和普通线段树是一样的嘛,,,,

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define ls (u << 1)
#define rs (u << 1 | 1)
using namespace std;
const int maxn = 4005,maxm = 5000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,D,S;
struct segx{
int mx[maxm],lc[maxm],rc[maxm],tag[maxm],cnt;
void modify(int& u,int l,int r,int L,int R,int v){
if (!u) u = ++cnt; mx[u] = max(mx[u],v);
if (l >= L && r <= R){tag[u] = max(tag[u],v); return;}
int mid = l + r >> 1;
if (mid >= L) modify(lc[u],l,mid,L,R,v);
if (mid < R) modify(rc[u],mid + 1,r,L,R,v);
}
int query(int u,int l,int r,int L,int R){
if (!u) return 0;
if (l >= L && r <= R) return mx[u];
int mid = l + r >> 1,ans = tag[u];
if (mid >= R) return max(ans,query(lc[u],l,mid,L,R));
if (mid < L) return max(ans,query(rc[u],mid + 1,r,L,R));
return max(ans,max(query(lc[u],l,mid,L,R),query(rc[u],mid + 1,r,L,R)));
}
}Seg;
struct segy{
int rt[maxn],tag[maxn];
void modify(int u,int l,int r,int L,int R,int ll,int rr,int v){
Seg.modify(rt[u],1,S,ll,rr,v);
if (l >= L && r <= R){Seg.modify(tag[u],1,S,ll,rr,v); return;}
int mid = l + r >> 1;
if (mid >= L) modify(ls,l,mid,L,R,ll,rr,v);
if (mid < R) modify(rs,mid + 1,r,L,R,ll,rr,v);
}
int query(int u,int l,int r,int L,int R,int ll,int rr){
if (l >= L && r <= R) return Seg.query(rt[u],1,S,ll,rr);
int mid = l + r >> 1,ans = Seg.query(tag[u],1,S,ll,rr);
if (mid >= L) ans = max(ans,query(ls,l,mid,L,R,ll,rr));
if (mid < R) ans = max(ans,query(rs,mid + 1,r,L,R,ll,rr));
return ans;
}
}T;
int main(){
D = read(); S = read(); n = read();
int d,s,h,x0,y0,x,y,xx,yy;
while (n--){
d = read(); s = read(); h = read(); x0 = read(); y0 = read();
x = x0 + 1; y = y0 + 1; xx = x0 + d; yy = y0 + s;
h += T.query(1,1,D,x,xx,y,yy);
T.modify(1,1,D,x,xx,y,yy,h);
}
printf("%d\n",T.query(1,1,D,1,D,1,S));
return 0;
}

BZOJ1513 [POI2006]Tet-Tetris 3D 【二维线段树】的更多相关文章

  1. 【BZOJ1513】[POI2006]Tet-Tetris 3D 二维线段树

    [BZOJ1513][POI2006]Tet-Tetris 3D Description Task: Tetris 3D "Tetris" 游戏的作者决定做一个新的游戏, 一个三维 ...

  2. bzoj 1513 POI2006 Tet-Tetris 3D 二维线段树+标记永久化

    1511: [POI2006]OKR-Periods of Words Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 351  Solved: 220[S ...

  3. 洛谷.3437.[POI2006]TET-Tetris 3D(二维线段树)

    题目链接 下落一个d*s的方块,则要在这个平面区域找一个最高的h' 更新整个平面区域的值为h+h' 对于本题,维护最大高度h和all 对于平面的x轴维护一棵线段树t1,每个t1的节点维护对应y轴的两棵 ...

  4. 洛谷P3437 [POI2006]TET-Tetris 3D(二维线段树 标记永久化)

    题意 题目链接 Sol 二维线段树空间复杂度是多少啊qwqqq 为啥这题全网空间都是\(n^2\)还有人硬要说是\(nlog^2n\)呀.. 对于这题来说,因为有修改操作,我们需要在外层线段树上也打标 ...

  5. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  6. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  7. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  8. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  9. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  10. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

随机推荐

  1. Asp.NET Core 在IIS部署 An assembly specified in the application dependencies manifest was not found

    今天在发布应用的时候,出来了一个报错:An assembly specified in the application dependencies manifest was not found 情况如下 ...

  2. python中如何统计一个类的实例化对象

    类中的静态变量 需要通过类名.静态变量名 来修改 :通过对象不能修改 python中如何统计一个类的实例化对象?? class Person: #静态变量count,用于记录类被实例化的次数 coun ...

  3. Redis缓存数据库的安装与配置(1)

    1.安装 tarxf redis-3.2.5.tar.gz cd redis-3.2.5 make mkdir -p /usr/local/redis/bin src目录下这些文件作用如下 redis ...

  4. PHP中的面向对象魔术方法大全

    1.__construct  构造方法 2.__destruct  析构方法 3.__get 获取成员值 4.__set 设定成员值 5.__isset 判断成员值 6.__unset unset成员 ...

  5. My First Marathon【我的第一次马拉松】

    My First Marathon A month before my first matathon, one of my ankles was injured and this meant not ...

  6. Linux C语言结构体-学习笔记

    Linux C语言结构体简介 前面学习了c语言的基本语法特性,本节进行更深入的学习. 预处理程序. 编译指令: 预处理, 宏定义, 建立自己的数据类型:结构体,联合体,动态数据结构 c语言表达式工具 ...

  7. 【Android】下拉刷新实现

    关于这方面的文章百度下有很多,我就只写写我自己实现过程. 我觉得学习一门语言不是做了几个项目就可以认为自己会了,这只是暂时的,若没有笔记,时间长了,你是怎么解决某些问题,估计连你自己都忘了,又得费时费 ...

  8. Git的使用规范(二)

    今天,我们来介绍一下git的一些命令行,来帮我们后面可以面对一些情况的时候,我们可以有一些解决的方法 1.git查看历史记录最全的命令行 git log --pretty=raw 2.对于一下的几个情 ...

  9. kylin实战系列(一)

    kylin实战系列(一) 把之前kylin的实践小结一下,以备以后查看.

  10. 查看sql 作业明细及运行记录

    --查看作业明细及状态 select j.name 'Job名', j.description '描述', j.ENABLED job_enabled, cast(js.last_run_date a ...