离线所有操作,对所有可能存在的点建立kd-tree,add相当于权值+1,cancel相当于权值-1。

修改操作要记录kd-tree上每个点的fa,从底向上地进行修改。

优化:若一个矩形框的sumv==0,则不进入。记录矩形框的面积时只记录“有意义”的点的(权值为0的不管)。

#include<cstdio>
#include<algorithm>
#include<stack>
#include<cstring>
using namespace std;
int f,C;
inline void R(int &x){
C=0;f=1;
for(;C<'0'||C>'9';C=getchar())if(C=='-')f=-1;
for(x=0;C>='0'&&C<='9';C=getchar())(x*=10)+=(C-'0');
x*=f;
}
inline void P(int x){
if(x<10)putchar(x+'0');
else{P(x/10);putchar(x%10+'0');}
}
stack<int>zhan;
#define N 100001
#define KD 3
int dn,n,root,m,qp[2][KD],idn;
struct Node
{
int ch[2],w,minn[KD],maxx[KD],p[KD],sumv,id;
void Init()
{
sumv=w;
for(int i=0;i<KD;++i)
minn[i]=maxx[i]=p[i];
}
}T[N];
bool operator < (const Node &a,const Node &b){return a.p[dn] < b.p[dn];}
inline void pushup(const int &rt)
{
T[rt].sumv=T[rt].w;
for(int i=0;i<2;++i)
if(T[rt].ch[i]/* && T[T[rt].ch[i]].sumv*/)
{
T[rt].sumv+=T[T[rt].ch[i]].sumv;
for(int j=0;j<KD;++j)
{
T[rt].minn[j]=min(T[rt].minn[j],T[T[rt].ch[i]].minn[j]);
T[rt].maxx[j]=max(T[rt].maxx[j],T[T[rt].ch[i]].maxx[j]);
}
}
}
int buildtree(int l=1,int r=n,int d=0)
{
dn=d;
int m=(l+r>>1);
nth_element(T+l,T+m,T+r+1);
T[m].Init();
if(l!=m) T[m].ch[0]=buildtree(l,m-1,(d+1)%KD);
if(m!=r) T[m].ch[1]=buildtree(m+1,r,(d+1)%KD);
pushup(m);
return m;
}
inline bool Inside(const int &o)
{
for(int i=0;i<KD;++i)
if(qp[0][i] > T[o].p[i] || T[o].p[i] > qp[1][i])
return 0;
return 1;
}
inline bool AllInside(const int &o)
{
for(int i=0;i<KD;++i)
if(qp[0][i] > T[o].minn[i] || T[o].maxx[i] > qp[1][i])
return 0;
return 1;
}
inline bool Cross(const int &o)
{
for(int i=0;i<KD;++i)
if(qp[0][i] > T[o].maxx[i] || T[o].minn[i] > qp[1][i])
return 0;
return 1;
}
int ans;
inline void Query(int rt=root)
{
if(Inside(rt)) ans+=T[rt].w;
for(int i=0;i<2;++i)
if(T[rt].ch[i] && Cross(T[rt].ch[i]))
{
if(AllInside(T[rt].ch[i]))
ans+=T[T[rt].ch[i]].sumv;
else if(T[T[rt].ch[i]].sumv)
Query(T[rt].ch[i]);
}
}
int val;
char op[N][7];
int dian[N][KD],rs[N],ids[N],ma[N],fa[N];
void Update()
{
int U=ma[idn];
T[U].w+=val;
T[U].sumv+=val;
U=fa[U];
while(U)
{
T[U].sumv=T[U].w+T[T[U].ch[0]].sumv+T[T[U].ch[1]].sumv;
// pushup(U);
U=fa[U];
}
}
int main()
{
// freopen("theresa9.in","r",stdin);
// freopen("bzoj3290.out","w",stdout);
R(n);
for(int i=1;i<=n;++i)
{
R(T[i].p[0]); R(T[i].p[1]); R(T[i].p[2]);
T[i].id=i;
T[i].w=1;
}
R(m);
for(int i=1;i<=m;++i)
{
scanf("%s",op[i]);
if(op[i][0]=='A')
{
++n;
R(T[n].p[0]); R(T[n].p[1]); R(T[n].p[2]);
T[n].id=n;
ids[i]=n;
zhan.push(n);
}
else if(op[i][0]=='Q')
{
R(dian[i][0]); R(dian[i][1]); R(dian[i][2]); R(rs[i]);
}
else
{
ids[i]=zhan.top();
zhan.pop();
}
}
root=(1+n>>1);
buildtree();
for(int i=1;i<=n;++i)
{
ma[T[i].id]=i;
for(int j=0;j<2;++j)
if(T[i].ch[j])
fa[T[i].ch[j]]=i;
}
for(int i=1;i<=m;++i)
if(op[i][0]=='A')
{
idn=ids[i];
val=1;
Update();
}
else if(op[i][0]=='Q')
{
memcpy(qp[0],dian[i],sizeof(qp[0]));
for(int j=0;j<KD;++j)
qp[1][j]=qp[0][j]+rs[i];
ans=0;
Query();
// printf("%d\n",ans);
P(ans),puts("");
}
else
{
idn=ids[i];
val=-1;
Update();
}
return 0;
}

【kd-tree】bzoj3290 Theresa与数据结构的更多相关文章

  1. BZOJ3290 : Theresa与数据结构

    CANCEL操作可以看作删点,X坐标可以离散化 将询问按Z坐标差分,转化成两个求Z<=某个数的和的询问 将操作CDQ分治 每次将前一半的修改.后一半的查询按照Z坐标排序 然后扫描线,每到一个询问 ...

  2. 【数据结构与算法】k-d tree算法

    k-d tree算法 k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点 ...

  3. 【数据结构】K-D Tree

    K-D Tree 这东西是我入坑 ICPC 不久就听说过的数据结构,但是一直没去学 QAQ,终于在昨天去学了它.还是挺好理解的,而且也有用武之地. 目录 简介 建树过程 性质 操作 例题 简介 K-D ...

  4. 【BZOJ-2648&2716】SJY摆棋子&天使玩偶 KD Tree

    2648: SJY摆棋子 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2459  Solved: 834[Submit][Status][Discu ...

  5. k-d tree算法

    k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点匹配的时候就会利用到k ...

  6. HDU2966 In case of failure(浅谈k-d tree)

    嘟嘟嘟 题意:给定\(n\)个二维平面上的点\((x_i, y_i)\),求离每一个点最近的点得距离的平方.(\(n \leqslant 1e5\)) 这就是k-d tree入门题了. k-d tre ...

  7. 浅谈K-D Tree

    初步认识\(K-D\) \(Tree\) \(K-D\) \(Tree\)是一种基于空间分割的二叉树形数据结构,一般用于高维信息检索.因为\(OI\)中很多问题都能转化为高维信息检索,所以\(K-D\ ...

  8. [转载]kd tree

    [本文转自]http://www.cnblogs.com/eyeszjwang/articles/2429382.html k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据 ...

  9. 初涉k-d tree

    听说k-d tree是一个骗分的好东西?(但是复杂度差评??? 还听说绍一的kdt常数特别小? KDT是什么 KDT的全称是k-degree tree,顾名思义,这是一种处理多维空间的数据结构. 例如 ...

随机推荐

  1. codeforces 1077F1

    题目:https://codeforces.com/contest/1077/problem/F1 题意: 你有n幅画,第i幅画的好看程度为ai,再给你两个数字k,x 表示你要从中选出刚好x幅画,并且 ...

  2. lwIP内存管理机制

    lwip的内存管理机制,我们以enet_lwip这个例程为例. 在使用lwip的时候,我们可以使用两种形式的内存,一种是heap(mem.c文件-mem_malloc()),一种是pool(memp. ...

  3. NodeJS概述

    NodeJS中文API 一.概述 Node.js 是一种建立在Google Chrome’s v8 engine上的 non-blocking (非阻塞), event-driven (基于事件的) ...

  4. HDFS之FileSystem

    package cn.hx.test; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.*; impo ...

  5. 【Foreign】阅读 [线段树][DP]

    阅读 Time Limit: 10 Sec  Memory Limit: 256 MB Description Input Output Sample Input 0 10 4 10 2 3 10 8 ...

  6. bzoj4764: 弹飞大爷 link-cut-tree

    题目传送门 这道题啊 调了一个晚上 因为写的是一个有根树和n个基环的写法 所以写得很奇怪..... 最后发现单独处理树的时候不能随意改变S(就是原来的根)不然size会出错.... #include& ...

  7. bp神经网络模型推导与c语言实现(转载)

    转载出处:http://www.cnblogs.com/jzhlin/archive/2012/07/28/bp.html BP 神经网络中的 BP 为 Back  Propagation 的简写,最 ...

  8. Spring容器整合WebSocket

    原链接:http://blog.csdn.net/canot/article/details/52575054 WebSocker是一个保持web客户端与服务器长链接的技术.这样在两者通信过程中如果服 ...

  9. maven多模块项目执行 deploy 时 忽略某些model (忽略war包)

    maven deploy 时,通常需要忽略生成war的model,简单调整一下配置即可: <plugins> <plugin> <groupId>org.apach ...

  10. hdu 5176(并查集)

    The Experience of Love Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/O ...