[CF538H]Summer Dichotomy
[CF538H]Summer Dichotomy
题目大意:
将若干个学生分为两个班级\(S_1,S_2\),每个班的学生数分别为\(n_1,n_2\)(甚至可以没有学生,也可以没有老师)。给出限制\(t_{\min},t_{\max}\),要求\(t_{\min}\le n_1+n_2\le t_{\max}\)。有\(n(n\le10^5)\)个老师,每个老师希望他所任教的班级人数在\([l_i,r_i]\)范围内。有\(m(m\le10^5)\)对老师之间有一些私人恩怨,不能分在一个班级。问是否存在合法的分班方案。如果有,求出其中的任意一种,输出每个班的总人数以及各个老师所任教的班级。
思路:
对于所有\([l_i,r_i]\)的限制,我们不妨假设\(n_1=\min\{r_i\},n_2=\max\{l_i\}\),显然这是比较松的约束。再考虑\(t_{\min},t_{\max}\)的限制,确定可行的一组\(n_1,n_2\)。考虑二分图染色构造老师分配的方案。对于只能分到\(S_1\)或只能分到\(S_2\)的老师DFS遍历染色,若更新到的结点与已染色结点矛盾,说明根本不是二分图,不存在合法的方案。对于两个都不可以分进去的,说明也不存在合法方案。最后再对于\(S_1\)和\(S_2\)都可以的进行染色。
源代码:
#include<cstdio>
#include<cctype>
#include<vector>
#include<climits>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
constexpr int N=1e5;
int l[N],r[N],ans[N];
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
void dfs(const int &x,const int &c) {
if(ans[x]) {
if(ans[x]!=c) throw(0);
return;
}
ans[x]=c;
for(auto &y:e[x]) {
dfs(y,3-c);
}
}
int main() {
const int t_min=getint(),t_max=getint();
const int n=getint(),m=getint();
int n1=INT_MAX,n2=INT_MIN;
for(register int i=0;i<n;i++) {
n2=std::max(n2,l[i]=getint());
n1=std::min(n1,r[i]=getint());
}
if(n1+n2<t_min) n2=t_min-n1;
else if(n1+n2>t_max) n1=t_max-n2;
if(n1<0||n2<0) {
puts("IMPOSSIBLE");
return 0;
}
for(register int i=0;i<m;i++) {
add_edge(getint()-1,getint()-1);
}
for(register int i=0;i<n;i++) {
try {
if(!(l[i]<=n1&&n1<=r[i])&&!(l[i]<=n2&&n2<=r[i])) throw(0);
if((l[i]<=n1&&n1<=r[i])&&!(l[i]<=n2&&n2<=r[i])) dfs(i,1);
if((l[i]<=n2&&n2<=r[i])&&!(l[i]<=n1&&n1<=r[i])) dfs(i,2);
} catch(...) {
puts("IMPOSSIBLE");
return 0;
}
}
for(register int i=0;i<n;i++) {
try {
if(!ans[i]) dfs(i,1);
} catch(...) {
puts("IMPOSSIBLE");
return 0;
}
}
puts("POSSIBLE");
printf("%d %d\n",n1,n2);
for(register int i=0;i<n;i++) {
printf("%d",ans[i]);
}
return 0;
}
[CF538H]Summer Dichotomy的更多相关文章
- The bytes/str dichotomy in Python 3
The bytes/str dichotomy in Python 3 - Eli Bendersky's website https://eli.thegreenplace.net/2012/01/ ...
- 【BZOJ1014】【JSOI2008】火星人prefix Splay处理区间,hash+dichotomy(二分)check出解
题意不赘述了,太清晰了. 说题解:首先依据原字符串建立SPT.首尾建议多加一个空白字符. 给一个树构图,依照平衡树的前后大小顺序性质能够使它们始终维持为一个序列,而且能够通过rank找到序列的第k个. ...
- The bytes/str dichotomy in Python 3 [transport]
reference and transporting from: http://eli.thegreenplace.net/2012/01/30/the-bytesstr-dichotomy-in-p ...
- 6 VC维
1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个 ...
- I finally made sense of front end build tools. You can, too.
来源于:https://medium.freecodecamp.com/making-sense-of-front-end-build-tools-3a1b3a87043b#.nvnd2vsd8 ...
- Coursera台大机器学习课程笔记5 -- Theory of Generalization
本章思路: 根据之前的总结,如果M很大,那么无论假设泛化能力差的概率多小,都无法忽略,所以问题转化为证明M不大,然后上章将其转化为证明成长函数:mh(N)为多项式级别.直接证明似乎很困难,本章继续利用 ...
- Coursera台大机器学习课程笔记4 -- Training versus Testing
这节的主题感觉和training,testing关系不是很大,其根本线索在于铺垫并求解一个问题: 为什么算法PLA可以正确的work?因为前面的知识告诉我们,只有当假设的个数有限的时候,我们才 ...
- 关于学习YYKit的记录
<1>遇到的问题 <1>使用@[].mutableCopy创建可变数组 代码出处:YYKitDemo-> YYRootViewController 源代码:self.ti ...
- 【转载】VC维的来龙去脉
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...
随机推荐
- Exponial~(欧拉函数)~(发呆题)
Description Everybody loves big numbers (if you do not, you might want to stop reading at this point ...
- centos7 mysql cluster集群搭建基于docker
1.准备 mn:集群管理服务器用于管理集群的其他节点.我们可以从管理节点创建和配置集群上的新节点.重新启动.删除或备份节点. db2/db3:这是节点间同步和数据复制的过程发生的层. db4/db5: ...
- 使用Word2010发布博客文章
发布博客可以直接在web页面上面编辑,也可以使用客户端编辑,其中客户端支持windows live writer以及word本身的发布博客功能.个人试用后倾向于使用word发布博客文章. 下面的内容转 ...
- bzoj2002 弹飞绵羊 lct版
这道题就是维护一个有根的lct 一开始建树全部建虚边 求多少次弹出就是求他到根的距离(根为n+1) 这里有个小技巧 将n+1作为根而没有虚根操作起来会比较方便 #include<cstdio&g ...
- 【BZOJ】1604: [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居
[算法]并查集+平衡树+数学+扫描线 [题解] 经典曼哈顿距离转切比雪夫距离. 曼哈顿距离:S=|x1-x2|+|y1-y2|<=c 即:max(x1-x2+y1-y2,x1-x2-y1+y2, ...
- bzoj 2668 费用流
我们可以把初始状态转化为目标状态这一约束转化为将黑子移动到目标状态所需要的最少步数. 除了初始点和目标点之外,剩下的点如果被经过那么就会被交换两次,所以我们将一个点拆成3个点,a,b,c,新建附加源点 ...
- Python阶段复习 - part 2 - Python序列/持久化
1. 把一个数字的list从小到大排序,然后写入文件,然后从文件中读取出来文件内容,然后反序,在追加到文件的下一行中 >>> import json >>> imp ...
- C++中 相对路径与绝对路径 斜杠 '/' 与反斜杠 '\'的区别
文件路径正斜杠和反斜杠 正斜杠,又称左斜杠,符号是"/":反斜杠,也称右斜杠,符号是"\".文件路径的表示可以分为绝对路径和相对路径: 1.绝对路径表示相对容易 ...
- selenium自动化添加日志
于logging日志的介绍,主要有两大功能,一个是控制台的输出,一个是保存到本地文件 先封装logging模块,保存到common文件夹命名为logger.py,以便于调用,直接上代码 filenam ...
- DRF基类APIView的子类GenericAPIView
DRF的基类是APIView类,GenericAPIView类是APIView类的子类. GenericAPIView类有什么存在的意义呢? 其实, 他主要提供了两个用处: 1.提供关于数据库查询的属 ...