Description

lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗?

Input

输入数据是一行,包括2个数字n和m

Output

输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数

Sample Input

2 2

Sample Output

2

HINT

【数据范围】
对于30%的数据,保证1<=m<=n<=1000
对于100%的数据,保证1<=m<=n<=1000000

Solution

只要看懂这个博客方法二的证明,就可以发现这个题只不过是那个证明变了一点而已。

只需要做起点的对称点用总路径减去不合法路径即可。
最后答案是C(m+n,n)-C(m+n,n+1)

Code

 #include<iostream>
#include<cstdio>
#define N (2000000+1000)
#define MOD (20100403)
using namespace std;
long long n,m,Fact[N],FactInv[N],Inv[N],ans; long long C(long long n,long long m)
{
if (m>n) return ;
return Fact[n]*FactInv[m]%MOD*FactInv[n-m]%MOD;
} int main()
{
scanf("%lld%lld",&n,&m);
Inv[]=Inv[]=Fact[]=Fact[]=;
for (int i=; i<=m+n; ++i)
{
Fact[i]=Fact[i-]*i%MOD;
Inv[i]=(MOD-MOD/i)*Inv[MOD%i]%MOD;
} FactInv[]=;
for (int i=; i<=m+n; ++i)
FactInv[i]=Inv[i]*FactInv[i-]%MOD;
printf("%lld",((C(m+n,n)-C(m+n,n+))%MOD+MOD)%MOD);
}

BZOJ1856:[SCOI2010]字符串(卡特兰数,组合数学)的更多相关文章

  1. Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1194  Solved: 651[Submit][Status][ ...

  2. bzoj 1856: [Scoi2010]字符串 卡特兰数

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1458  Solved: 814[Submit][Status][ ...

  3. Luogu 1641[SCOI2010]生成字符串 - 卡特兰数

    Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...

  4. 2018.09.25 bzoj1856: [Scoi2010]字符串(组合数学)

    传送门 如果有n==m的条件就是卡特兰数. 但现在n不一定等于m. 我们可以考虑用求卡特兰数一样的方法来求答案. 我们知道有一种求卡特兰数的方法是转到二维平面求答案. 这道题就可以这样做. 我们将这个 ...

  5. BZOJ 1856: [Scoi2010]字符串 [Catalan数]

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1418  Solved: 790[Submit][Status][ ...

  6. uva 1478 - Delta Wave(递推+大数+卡特兰数+组合数学)

    option=com_onlinejudge&Itemid=8&category=471&page=show_problem&problem=4224" st ...

  7. 1856: [Scoi2010]字符串(Catalan数)

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 2117  Solved: 1211[Submit][Status] ...

  8. bzoj千题计划299:bzoj1856: [Scoi2010]字符串

    http://www.lydsy.com/JudgeOnline/problem.php?id=1856 卡特兰数 从(1,1)走到(n,m),不能走y=x 上方的点,求方案数 从(1,1)走到(n, ...

  9. Train Problem II(卡特兰数 组合数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1023 Train Problem II Time Limit: 2000/1000 MS (Java/ ...

随机推荐

  1. Oracle ASM 常用命令

    01, 查看磁盘路径 select name,path,group_number from v$asm_disk_stat; 02, 查看磁盘组信息 select state,name,type,to ...

  2. linux系统优化基础

    linux系统优化基础 tags: linux 优化 kingle---### 1, 查看centos版本:cat etc/redhat-release 看看centos架构信息:uname -m 查 ...

  3. OSG DB的插件地址设置

    今天搞了一整天OSG,结果每次都说could not find plugin,就是说找不到OSG的插件去加载文件,我大概看了下OSG的插件机制,发现他是用插件的形式下去读取文件的 http://blo ...

  4. socket基础篇

    server_scoket.py #!/usr/bin/env python3.5 # -*- coding:utf-8 -*- import socket import subprocess ip_ ...

  5. Ace教你一步一步做Android新闻客户端(三) JSON数据解析

    对于服务器端来说,返回给客户端的数据格式一般分为html.xml和json这三种格式,现在给大家讲解一下json这个知识点, 1 如何通过json-lib和gson这两个json解析库来对解析我们的j ...

  6. RefulApi自动化测试~Hitchhiker的部署

    Hitchhiker是一个在github上开源的项目,被善友大哥收录到了它的微服务工具包里<开源的 Restful Api 集成测试工具 Hitchhiker>,同时源代码也开源到了git ...

  7. (转载)C#获取当前应用程序所在路径及环境变量

    一.获取当前文件的路径 string str1=Process.GetCurrentProcess().MainModule.FileName;//可获得当前执行的exe的文件名. string st ...

  8. java selector

    java selector使用select轮询注册到selector中的channel,如果有channel准备好注册的事件,select()返回,返回值为可以操作的channel的个数.通过sele ...

  9. JS图片赖加载例子

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. 如何才能快速入门python3?

    一些朋友自学python过程中,发现书也能看懂,书上的玩具代码也能看懂,但为啥自己不能做习题,不能写代码解决问题,自己不能动手写代码? 原因是初学者没有学会计算思维.解决问题的方法.编程思路. 编程思 ...