题意:在区间中找一个数,求出该区间每个数与这个数距离的总和,使其最小

找的数字是中位数(若是偶数个,则中间随便哪个都可)接着找到该区间比此数大的数的总和

区间中位数可以使用划分树,然后在其中记录:每层的 1-i 中划分到左区间的总和

划分树:

划分树是一种基于线段树的数据结构。主要用于快速求出(在log(n)的时间复杂度内)序列区间的第k大值 。

划分树和归并树都是用线段树作为辅助的,原理是基于快排 和归并排序 的。

划分树的建树过程基本就是模拟快排过程,取一个已经排过序的区间中值,然后把小于中值的点放左边,大于的放右边。并且记录d层第i个数之前(包括i)小于中值的放在左边的数。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define dir(a,b) (a>>b)
const int Max=1e5+;
int orval[Max];
int dsegtr[][Max];//记录第i层划分树的序列
int lele[][Max];//记录第i层的1-i划分到左子树的元素个数(包括i)
long long sum[][Max],psum[Max],lsum;//每层的1-i中划分到左区间的总和
void Create(int sta,int enn,int cur)
{
int mid=dir(sta+enn,);
int lsame=mid-sta+;//此区间左边不小于orval[mid]的个数
int lsta=sta,rsta=mid+;
for(int i=sta; i<=mid; ++i)
{
if(orval[i]<orval[mid])
lsame--;
}
for(int i=sta; i<=enn; ++i)//给下一层赋值
{
sum[cur][i]=sum[cur][i-];
if(i==sta)
{
lele[cur][i]=;//表示[l, i]内有多少个数分到左边
}
else
{
lele[cur][i]=lele[cur][i-]; }
if(dsegtr[cur][i]==orval[mid])
{
if(lsame)
{
sum[cur][i]+=dsegtr[cur][i];
lsame--;
lele[cur][i]++;
dsegtr[cur+][lsta++]=dsegtr[cur][i];//相当于移动元素到左边
}
else
{
dsegtr[cur+][rsta++]=dsegtr[cur][i];//相当于移动元素到右边
}
}
else if(dsegtr[cur][i]<orval[mid])
{
sum[cur][i]+=dsegtr[cur][i];
lele[cur][i]++;
dsegtr[cur+][lsta++]=dsegtr[cur][i];
}
else
{
dsegtr[cur+][rsta++]=dsegtr[cur][i];
}
}
if(sta==enn)
return;
Create(sta,mid,cur+);
Create(mid+,enn,cur+);
return;
}
int Query(int sta,int enn,int cur,int lef,int rig,int k)
{
int lsame;//[sta, lef)内将被划分到左子树的元素数目
int rsame;//[lef,rig]内将被划分到左子树的元素数目 关键
int mid=dir(sta+enn,);
if(sta==enn)
return dsegtr[cur][sta];
if(sta==lef)//特判
{
lsame=;
rsame=lele[cur][rig];
}
else
{
lsame=lele[cur][lef-];
rsame=lele[cur][rig]-lsame;
}
if(k<=rsame)
{
return Query(sta,mid,cur+,sta+lsame,sta+lsame+rsame-,k);//关键
}
else
{
lsum+=sum[cur][rig]-sum[cur][lef-];//所求值不在左区间
return Query(mid+,enn,cur+,mid-sta++lef-lsame,mid-sta++rig-lsame-rsame,k-rsame);//关键
}
}
long long Solve(long long temp,int rig,int lef,int k)
{
long long resr=psum[rig]-psum[lef-]-lsum-temp-(long long)(rig-lef+-k)*temp;
long long resl=(long long)(k-)*temp-lsum;
return resr+resl;
}
int main()
{
int n,m,t,coun=;
int lef,rig;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<;++i)
sum[i][]=0ll;
psum[]=0ll;
for(int i=; i<=n; ++i)
{
scanf("%d",&orval[i]);
psum[i]=psum[i-]+orval[i];
dsegtr[][i]=orval[i];
sum[][i]=sum[][i-]+orval[i];
}
sort(orval+,orval+n+);
Create(,n,);
scanf("%d",&m);
printf("Case #%d:\n",++coun);
for(int i=; i<m; ++i)
{
lsum=0ll;
scanf("%d %d",&lef,&rig);
lef++,rig++;
int temp=Query(,n,,lef,rig,(rig-lef+>>));
printf("%I64d\n",Solve(temp,rig,lef,(rig-lef+>>)));
}
printf("\n");
}
return ;
}

参考:http://www.cnblogs.com/pony1993/archive/2012/07/17/2594544.html

HDU 3473 Minimum Sum (划分树求区间第k大带求和)(转)的更多相关文章

  1. [hdu2665]Kth number(划分树求区间第k大)

    解题关键:划分树模板题. #include<cstdio> #include<cstring> #include<algorithm> #include<cs ...

  2. HDU 3473 Minimum Sum 划分树,数据结构 难度:1

    http://acm.hdu.edu.cn/showproblem.php?pid=3473 划分树模板题目,需要注意的是划分树的k是由1开始的 划分树: 参考:http://blog.csdn.ne ...

  3. HDU 3473 Minimum Sum 划分树

    题意: 给出一个长度为\(n(1 \leq n \leq 10^5)\)的序列\(a\) 有若干次查询l r:找到一个\(x\)使得\(\sum \limits_{l \leq i \leq r} \ ...

  4. [csu/coj 1080]划分树求区间前k大数和

    题意:从某个区间内最多选择k个数,使得和最大 思路:首先题目给定的数有负数,如果区间前k大出现负数,那么负数不选和更大,于是对于所有最优选择,负数不会出现,所以用0取代负数,问题便转化为区间的前k大数 ...

  5. HDOJ题目4417 Super Mario(划分树求区间比k小的个数+二分)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  6. [poj2104]kth-number(归并树求区间第k大)

    复杂度:$O(nlog^3n)$ #include<cstdio> #include<cstring> #include<algorithm> #include&l ...

  7. poj 2104 主席树(区间第k大)

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 44940   Accepted: 14946 Ca ...

  8. POJ2761---Feed the dogs (Treap求区间第k大)

    题意 就是求区间第k大,区间 不互相包含. 尝试用treap解决一下 第k大的问题. #include <set> #include <map> #include <cm ...

  9. HDU 3473 Minimum Sum (划分树)

    题意:给定一个数组,有Q次的询问,每次询问的格式为(l,r),表示求区间中一个数x,使得sum = sigma|x - xi|最小(i在[l,r]之间),输出最小的sum. 思路:本题一定是要O(nl ...

随机推荐

  1. Android无线测试之—UiAutomator UiSelector API介绍之八

    对象搜索—特殊属性.节点与资源ID 一.特殊属性定位对象相关API 返回值 API 描述 UiSelector checkableboolean val) 是否可选择,一般开关组件上具有checkab ...

  2. [Spring Data MongoDB]学习笔记--注册一个Mongo实例

    1. 通过Java based bean metadata @Configuration public class AppConfig { public @Bean Mongo mongo() thr ...

  3. 《从零开始学Swift》学习笔记(Day 46)——下标重写

    原创文章,欢迎转载.转载请注明:关东升的博客 下标是一种特殊属性.子类属性重写是重写属性的getter和setter访问器,对下标的重写也是重写下标的getter和setter访问器. 下面看一个示例 ...

  4. 【转】Gacutil.exe(全局程序集缓存工具)

    全局程序集缓存工具使您可以查看和操作全局程序集缓存和下载缓存的内容. 安装 Visual Studio 和 Windows SDK 时会自动安装此工具. 要运行工具,我们建议您使用 Visual St ...

  5. mysql-font的理解

    mysql-front是为mysql制作的一种图形化界面工具,可以管理和操作数据库,比如建表,修改数据,拖拽方式的数据库和表格,可编辑/可增加/删除的域,可编辑/可插入/删除的记录,可显示的成员,可执 ...

  6. Ubuntu出现Authentication failure(认证失败)的解决方法(转)

    当我们想在刚安装的Linux系统启动某些服务或者想进入root用户时提示认证失败或者权限不够时,原因是刚安装Ubuntu后,root用户默认是未激活的,不允许登录,也不允许使用su命令到转到root用 ...

  7. Latex排版全解(转)

    Latex排版全解 http://blog.csdn.net/langb2014/article/details/51354238

  8. 剑指offer 面试63题

    面试63题 题目:股票的最大利润 题:假设把某股票的价格按照时间先后顺序存储在数组中,请问买卖该股票一次可获得的最大利润是多少?例如,一只股票在某些时间节点的价格为{9,11,8,5,7,12,16, ...

  9. $.messager.confirm修改弹出框按钮提示文字

    $.messager.confirm 默认提示语为“OK”和“Cancel”.引入中文控件后变为“确定”和“取消” <script src="../js/locale/easyui-l ...

  10. 字符编码 and 字节和字符串转换(待补充)

    ascii用一个字节(8位二进制)代表一个字符 Unicode常用2个字节(16位二进制)代表一个字符,生僻字需要用四个字节 汉字中已经超出了ASCII编码的范围,用Unicode, Unicode兼 ...