HDU 3473 Minimum Sum (划分树求区间第k大带求和)(转)
题意:在区间中找一个数,求出该区间每个数与这个数距离的总和,使其最小
找的数字是中位数(若是偶数个,则中间随便哪个都可)接着找到该区间比此数大的数的总和
区间中位数可以使用划分树,然后在其中记录:每层的 1-i 中划分到左区间的总和
划分树:
划分树是一种基于线段树的数据结构。主要用于快速求出(在log(n)的时间复杂度内)序列区间的第k大值 。
划分树和归并树都是用线段树作为辅助的,原理是基于快排 和归并排序 的。
划分树的建树过程基本就是模拟快排过程,取一个已经排过序的区间中值,然后把小于中值的点放左边,大于的放右边。并且记录d层第i个数之前(包括i)小于中值的放在左边的数。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define dir(a,b) (a>>b)
const int Max=1e5+;
int orval[Max];
int dsegtr[][Max];//记录第i层划分树的序列
int lele[][Max];//记录第i层的1-i划分到左子树的元素个数(包括i)
long long sum[][Max],psum[Max],lsum;//每层的1-i中划分到左区间的总和
void Create(int sta,int enn,int cur)
{
int mid=dir(sta+enn,);
int lsame=mid-sta+;//此区间左边不小于orval[mid]的个数
int lsta=sta,rsta=mid+;
for(int i=sta; i<=mid; ++i)
{
if(orval[i]<orval[mid])
lsame--;
}
for(int i=sta; i<=enn; ++i)//给下一层赋值
{
sum[cur][i]=sum[cur][i-];
if(i==sta)
{
lele[cur][i]=;//表示[l, i]内有多少个数分到左边
}
else
{
lele[cur][i]=lele[cur][i-]; }
if(dsegtr[cur][i]==orval[mid])
{
if(lsame)
{
sum[cur][i]+=dsegtr[cur][i];
lsame--;
lele[cur][i]++;
dsegtr[cur+][lsta++]=dsegtr[cur][i];//相当于移动元素到左边
}
else
{
dsegtr[cur+][rsta++]=dsegtr[cur][i];//相当于移动元素到右边
}
}
else if(dsegtr[cur][i]<orval[mid])
{
sum[cur][i]+=dsegtr[cur][i];
lele[cur][i]++;
dsegtr[cur+][lsta++]=dsegtr[cur][i];
}
else
{
dsegtr[cur+][rsta++]=dsegtr[cur][i];
}
}
if(sta==enn)
return;
Create(sta,mid,cur+);
Create(mid+,enn,cur+);
return;
}
int Query(int sta,int enn,int cur,int lef,int rig,int k)
{
int lsame;//[sta, lef)内将被划分到左子树的元素数目
int rsame;//[lef,rig]内将被划分到左子树的元素数目 关键
int mid=dir(sta+enn,);
if(sta==enn)
return dsegtr[cur][sta];
if(sta==lef)//特判
{
lsame=;
rsame=lele[cur][rig];
}
else
{
lsame=lele[cur][lef-];
rsame=lele[cur][rig]-lsame;
}
if(k<=rsame)
{
return Query(sta,mid,cur+,sta+lsame,sta+lsame+rsame-,k);//关键
}
else
{
lsum+=sum[cur][rig]-sum[cur][lef-];//所求值不在左区间
return Query(mid+,enn,cur+,mid-sta++lef-lsame,mid-sta++rig-lsame-rsame,k-rsame);//关键
}
}
long long Solve(long long temp,int rig,int lef,int k)
{
long long resr=psum[rig]-psum[lef-]-lsum-temp-(long long)(rig-lef+-k)*temp;
long long resl=(long long)(k-)*temp-lsum;
return resr+resl;
}
int main()
{
int n,m,t,coun=;
int lef,rig;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<;++i)
sum[i][]=0ll;
psum[]=0ll;
for(int i=; i<=n; ++i)
{
scanf("%d",&orval[i]);
psum[i]=psum[i-]+orval[i];
dsegtr[][i]=orval[i];
sum[][i]=sum[][i-]+orval[i];
}
sort(orval+,orval+n+);
Create(,n,);
scanf("%d",&m);
printf("Case #%d:\n",++coun);
for(int i=; i<m; ++i)
{
lsum=0ll;
scanf("%d %d",&lef,&rig);
lef++,rig++;
int temp=Query(,n,,lef,rig,(rig-lef+>>));
printf("%I64d\n",Solve(temp,rig,lef,(rig-lef+>>)));
}
printf("\n");
}
return ;
}
参考:http://www.cnblogs.com/pony1993/archive/2012/07/17/2594544.html
HDU 3473 Minimum Sum (划分树求区间第k大带求和)(转)的更多相关文章
- [hdu2665]Kth number(划分树求区间第k大)
解题关键:划分树模板题. #include<cstdio> #include<cstring> #include<algorithm> #include<cs ...
- HDU 3473 Minimum Sum 划分树,数据结构 难度:1
http://acm.hdu.edu.cn/showproblem.php?pid=3473 划分树模板题目,需要注意的是划分树的k是由1开始的 划分树: 参考:http://blog.csdn.ne ...
- HDU 3473 Minimum Sum 划分树
题意: 给出一个长度为\(n(1 \leq n \leq 10^5)\)的序列\(a\) 有若干次查询l r:找到一个\(x\)使得\(\sum \limits_{l \leq i \leq r} \ ...
- [csu/coj 1080]划分树求区间前k大数和
题意:从某个区间内最多选择k个数,使得和最大 思路:首先题目给定的数有负数,如果区间前k大出现负数,那么负数不选和更大,于是对于所有最优选择,负数不会出现,所以用0取代负数,问题便转化为区间的前k大数 ...
- HDOJ题目4417 Super Mario(划分树求区间比k小的个数+二分)
Super Mario Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- [poj2104]kth-number(归并树求区间第k大)
复杂度:$O(nlog^3n)$ #include<cstdio> #include<cstring> #include<algorithm> #include&l ...
- poj 2104 主席树(区间第k大)
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 44940 Accepted: 14946 Ca ...
- POJ2761---Feed the dogs (Treap求区间第k大)
题意 就是求区间第k大,区间 不互相包含. 尝试用treap解决一下 第k大的问题. #include <set> #include <map> #include <cm ...
- HDU 3473 Minimum Sum (划分树)
题意:给定一个数组,有Q次的询问,每次询问的格式为(l,r),表示求区间中一个数x,使得sum = sigma|x - xi|最小(i在[l,r]之间),输出最小的sum. 思路:本题一定是要O(nl ...
随机推荐
- Android无线测试之—UiAutomator UiSelector API介绍之八
对象搜索—特殊属性.节点与资源ID 一.特殊属性定位对象相关API 返回值 API 描述 UiSelector checkableboolean val) 是否可选择,一般开关组件上具有checkab ...
- On the fly test
on the fly test就是边开发边测试的意思.test code不是早就生成好的,在一边生成code的同时一边做test running,最大的好处是,flexiable ,每一次可以选择不同 ...
- php var_dump()函数的详解
说明:var_dump()方法,判断一个变量的类型与长度,并输出变量的数值,如果变量有值,则输出是变量的值,并返回数据类型.显示关于一个或多个表达式的结构信息,包括表达式的类型与值.数组将递归展开值, ...
- mysql_数据库_操作
1.查看数据库 show databases; # 默认数据库: test - 用于用户测试数据 information_schema - MySQL本身架构相关数据 2.创建数据库 #utf- 编码 ...
- Ajax 处理json的方法不同
json字符串从从后台传递到前台的方法有两种 1.使用context.Response(); 2.使用webmethod 方法调用静态函数 返回的字符串 前者返回的json是obj类型,而后者返回的是 ...
- C# MD5加密与校验 引用
using System; using System.Security.Cryptography; using System.Text; class Example { // Hash an inpu ...
- Python电影投票系统
电影投票:程序先给出几个目前正在上映的电影列表. 由用户给每个电影投票.最终将该用户投票信息公布出来 lst = ['北京遇上西雅图', '解救吴先生', '美国往事', '西西里的美丽传说']结果: ...
- 笔记:zookeeper Hello World
下载zookeeper-3.4.6 , 试用了一下 standlone 启动 ./bin/zkServer.sh start 注: Usage: ./bin/zkServer.sh {start|st ...
- Summaries On Java
@1:== 和 equals(): ==用于比较引用和比较基本数据类型时具有不同的功能: 比较基本数据类型:如果两个值相同,则结果为true. 比较引用:如果引用指向内存中的同一对象,结果为true( ...
- Qt移植对USB鼠标键盘、触摸屏的支持
.USB键盘 经过一番搜索,发现对Qt键盘的支持主要关系到两个方面: 1. 键盘类型确定: 4.7以前的Qt版本,如果是PS2圆孔键盘,Qt编译时需加上选项:-qt-kbd-vr41xx(未测试):如 ...