Party All the Time

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5462    Accepted Submission(s): 1707

Problem Description
In the Dark forest, there is a Fairy kingdom where all the spirits will go together and Celebrate the harvest every year. But there is one thing you may not know that they hate walking so much that they would prefer to stay at home if they need to walk a long way.According to our observation,a spirit weighing W will increase its unhappyness for S3*W units if it walks a distance of S kilometers.
Now give you every spirit's weight and location,find the best place to celebrate the harvest which make the sum of unhappyness of every spirit the least.
 
Input
The first line of the input is the number T(T<=20), which is the number of cases followed. The first line of each case consists of one integer N(1<=N<=50000), indicating the number of spirits. Then comes N lines in the order that x[i]<=x[i+1] for all i(1<=i<N). The i-th line contains two real number : Xi,Wi, representing the location and the weight of the i-th spirit. ( |xi|<=106, 0<wi<15 )
 
Output
For each test case, please output a line which is "Case #X: Y", X means the number of the test case and Y means the minimum sum of unhappyness which is rounded to the nearest integer.
 
Sample Input
1
4
0.6 5
3.9 10
5.1 7
8.4 10
 
Sample Output
Case #1: 832
 
 
直接代码了
#include<bits/stdc++.h>
using namespace std;
#define N 50500
struct node{
double p;
double w;
}a[N];
int n;
double sum(double mid){
double sum=0.0;
for(int i=;i<n;i++){
double s=fabs(a[i].p-mid);
sum+=s*s*s*a[i].w;
}
return sum;
}
double sanfen(double l,double r){
double mid,midd,ans1,ans2,left,right;
left=l;right=r;
while(left+0.000000001<right){
mid=(left+right)/2.0;
midd=(mid+right)/2.0;
ans1=sum(mid);
ans2=sum(midd);
if(ans1<ans2)right=midd;
else left=mid;
}
return left;
}
int main(){
int t,num;
double left,right,ans,m;
num=;
while(~scanf("%d",&t)){
while(t--){
num++;
left=1e5;right=1e-;
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%lf%lf",&a[i].p,&a[i].w);
left=min(left,a[i].p);
right=max(right,a[i].p);
}
m=sanfen(left,right);
ans=sum(m);
printf("Case #%d: %.0lf\n",num,ans);
}
}
return ;
}
 

HDU 4355.Party All the Time-三分的更多相关文章

  1. codeforces 782B The Meeting Place Cannot Be Changed+hdu 4355+hdu 2438 (三分)

                                                                   B. The Meeting Place Cannot Be Change ...

  2. hdu 4355 Party All the Time(三分搜索)

    Problem Description In the Dark forest, there is a Fairy kingdom where all the spirits will go toget ...

  3. HDU 4355 Party All the Time (三分求极值)

    题意:给定x轴上有n个点,每一个点都有一个权值,让在x轴上选一个点,求出各点到这个点的距离的三次方乘以权值最小. 析:首先一开始我根本不会三分,也并没有看出来这是一个三分的题目的,学长说这是一个三分的 ...

  4. HDU 4355——Party All the Time——————【三分求最小和】

    Party All the Time Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. HDU 4355 Party All the Time(三分|二分)

    题意:n个人,都要去參加活动,每一个人都有所在位置xi和Wi,每一个人没走S km,就会产生S^3*Wi的"不舒适度",求在何位置举办活动才干使全部人的"不舒适度&quo ...

  6. HDU 4355:Party All the Time(三分模板)

    Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s) ...

  7. hdu 4717 The Moving Points(三分+计算几何)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 说明下为啥满足三分: 设y=f(x) (x>0)表示任意两个点的距离随时间x的增长,距离y ...

  8. hdu 5144 NPY and shot 物理+三分

    NPY and shot Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Pro ...

  9. hdu 4717 The Moving Points(三分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4717 大致题意:给出每一个点的坐标以及每一个点移动的速度和方向. 问在那一时刻点集中最远的距离在全部时刻的最远距 ...

  10. HDU 4454 - Stealing a Cake(三分)

    我比较快速的想到了三分,但是我是从0到2*pi区间进行三分,并且漏了一种点到边距离的情况,一直WA了好几次 后来画了下图才发现,0到2*pi区间内是有两个极值的,每个半圆存在一个极值 以下是代码 #i ...

随机推荐

  1. jsp实用过滤器写法

    使用过滤器来给servlet设置编码 public class CharacterEncodingFilter implements Filter{ @Override public void des ...

  2. Luogu2662 牛场围栏(最短路)

    小凯的疑惑升级版的升级版.答案若存在不会超过30002-3000,暴力dp似乎勉强可以过.当然这不优美. 注意到如果能拼出长度为l的围栏,就一定能拼出长度为l+kx的围栏,其中x为最短的(或任意一个) ...

  3. [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演

    ---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...

  4. 洛谷 P1379 八数码难题 解题报告

    P1379 八数码难题 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初 ...

  5. 安徽师大附中%你赛day7 T2 乘积 解题报告

    乘积 题目背景 \(\mathrm{Smart}\) 最近在潜心研究数学, 他发现了一类很有趣的数字, 叫做无平方因子数. 也就是这一类数字不能够被任意一个质数的平方整除, 比如\(6\).\(7\) ...

  6. 【NOIP 模拟赛】区间第K大(kth) 乱搞

    biubiu~~~ 这道题就是预处理,我们就是枚举每一个数,找到左边比他大的数的个数以及其对应的区间,右边也如此,我们把左边的和右边的相乘就得到了我们的答案,我们发现这是O(n^3)的,但是实际证明他 ...

  7. Why is the ibdata1 file continuously growing in MySQL?

    We receive this question about the ibdata1 file in MySQL very often in Percona Support. The panic st ...

  8. 动态规划:DAG-嵌套矩形

    据说DAG是动态规划的基础,想一想还真的是这样的,动态规划的所有状态和转移都可以归约成DAG DAG有两个典型模型,一个是嵌套矩形问题一个是硬币问题,这里仅介绍一个嵌套矩形问题 等二轮复习的时候再补上 ...

  9. DotNet 学习笔记 MVC模型

    Model Binding Below is a list of model binding attributes: •[BindRequired]: This attribute adds a mo ...

  10. DotNETCore 学习笔记 异常处理

    Error Handling public void Configure(IApplicationBuilder app, IHostingEnvironment env) { app.UseIISP ...