Codeforces 853C - Boredom
853C - Boredom
题意
给出一个矩阵,每行每列有且仅有一个点。每次询问一个子矩形,问这些点构成的矩形有多少个与给定的矩形相交(两个处于对角线上的点可以组成矩形)。
分析
考虑矩形周围 8 个方向,答案其实就是这些方向上的点的组合。直接去算相交比较麻烦,我们可以考虑去算不相交的矩形的个数,例如上方有 \(x\) 个点,则要减去矩形的个数 \(\frac{x * (x - 1)}{2}\) ,下左右同理,但是这样会多减去左下角、左上角、右上角、右下角四个区域的点组成的矩形的个数,考虑再加回来,那我们实际上就要高效算出这些区域内点的个数。二维平面统计点的个数,上主席树。
再讲讲主席树查询的那部分,和线段树很类似(废话)。为什么它可以统计纵轴方向上某个区间点的个数呢?注意到在插入数据的时候我们是根据值的大小去决定走左边还是右边的,在查询的时候,同样根据值的大小决定走左还是走右(这个值此时是区间端点的值)。
code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define lson l, m
#define rson m + 1, r
const int MAXN = 2e5 + 10;
int L[MAXN << 5], R[MAXN << 5], sum[MAXN << 5];
int tot;
int f[MAXN];
int build(int l, int r) {
int rt = ++tot;
sum[rt] = 0;
if(l < r) {
int m = l + r >> 1;
L[rt] = build(lson);
R[rt] = build(rson);
}
return rt;
}
int update(int pre, int l, int r, int x) {
int rt = ++tot;
L[rt] = L[pre]; R[rt] = R[pre]; sum[rt] = sum[pre] + 1;
if(l < r) {
int m = l + r >> 1;
if(x <= m) L[rt] = update(L[pre], lson, x);
else R[rt] = update(R[pre], rson, x);
}
return rt;
}
ll query(int ql, int qr, int l_, int r_, int l, int r) {
if(l >= l_ && r <= r_) return sum[qr] - sum[ql];
int m = (l + r) / 2;
ll res = 0;
if(m >= l_) res += query(L[ql], L[qr], l_, r_, lson);
if(m < r_) res += query(R[ql], R[qr], l_, r_, rson);
return res;
}
ll cal(ll x) { return x * (x - 1) / 2; }
int main() {
tot = 0;
int n, q;
scanf("%d%d", &n, &q);
f[0] = build(1, n);
for(int i = 1; i <= n; i++) {
int x;
scanf("%d", &x);
f[i] = update(f[i - 1], 1, n, x);
}
while(q--) {
int l, d, r, u;
scanf("%d%d%d%d", &l, &d, &r, &u);
ll res = cal(n) - cal(l - 1) - cal(n - r) - cal(d - 1) - cal(n - u);
if(d > 1) {
res += cal(query(f[0], f[l - 1], 1, d - 1, 1, n));
res += cal(query(f[r], f[n], 1, d - 1, 1, n));
}
if(u < n) {
res += cal(query(f[0], f[l - 1], u + 1, n, 1, n));
res += cal(query(f[r], f[n], u + 1, n, 1, n));
}
printf("%I64d\n", res);
}
return 0;
}
Codeforces 853C - Boredom的更多相关文章
- [Codeforces Round #433][Codeforces 853C/854E. Boredom]
题目链接:853C - Boredom/854E - Boredom 题目大意:在\(n\times n\)的方格中,每一行,每一列都恰有一个被标记的方格,称一个矩形为漂亮的当且仅当这个矩形有两个角是 ...
- CodeForces 456-C Boredom
题目链接:CodeForces -456C Description Alex doesn't like boredom. That's why whenever he gets bored, he c ...
- CodeForces 455A Boredom (DP)
Boredom 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/G Description Alex doesn't like b ...
- Codeforces 455A - Boredom - [DP]
题目链接:https://codeforces.com/problemset/problem/455/A 题意: 给出一个 $n$ 个数字的整数序列 $a[1 \sim n]$,每次你可以选择一个 $ ...
- Codeforces 445A Boredom(DP+单调队列优化)
题目链接:http://codeforces.com/problemset/problem/455/A 题目大意:有n个数,每次可以选择删除一个值为x的数,然后值为x-1,x+1的数也都会被删除,你可 ...
- Codeforces 455A Boredom (线性DP)
<题目链接> 题目大意:给定一个序列,让你在其中挑选一些数,如果你选了x,那么你能够得到x分,但是该序列中所有等于x-1和x+1的元素将全部消失,问你最多能够得多少分. 解题分析:从小到大 ...
- Codeforces 455A Boredom 取数字的dp
题目链接:点击打开链接 给定一个n长的序列 删除x这个数就能获得x * x的个数 的分数,然后x+1和x-1这2个数会消失.即无法获得这2个数的分数 问最高得分. 先统计每一个数出现的次数.然后dp一 ...
- Codeforces Round #260 (Div. 1) A - Boredom DP
A. Boredom Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/problem/A ...
- DP Codeforces Round #260 (Div. 1) A. Boredom
题目传送门 /* 题意:选择a[k]然后a[k]-1和a[k]+1的全部删除,得到点数a[k],问最大点数 DP:状态转移方程:dp[i] = max (dp[i-1], dp[i-2] + (ll) ...
随机推荐
- NEYC 2017 游记
day 1: result: sum_rank: 11 school_rank:1 水题在你高估的时候就已经不水了 sum:有个快速乘类似快速幂: int ans=0; ...
- MySQL使用笔记(六)条件数据记录查询
By francis_hao Dec 17,2016 条件数据记录查询 mysql> select field1,field2-- from table_name where 条件; 其中 ...
- HNOI2002 营业额统计 [Splay]
题目描述 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额.分析营业情况是 ...
- ecplise中修改reviewboard密码
一.概述 如果想在ecplise中修改reviewboard密码,步骤请参考如下图片:
- Kafka自我学习3-Scalable
1.After created the zookeeper cluster, we found all broker cluster topic can be find in zoo1, zoo2, ...
- Linux下文件解压命令
1.压缩命令: 命令格式:tar -zcvf 压缩文件名.tar.gz 被压缩文件名 可先切换到当前目录下.压缩文件名和被压缩文件名都可加入路径. 2.解压缩命令: 命令格式:tar -zxvf 压缩 ...
- supervisor提高nodejs调试效率
1.NodeJS环境安装 2.安装supervisor npm install supervisor -g (表示安装到全局路径下) 开发nodejs程序,调试的时候,无论你修改了代码的哪一部分,都 ...
- python用户登录,密码错误3次则锁定
需求: 1.输入用户名密码 2.认证成功后显示欢迎信息 3.输错三次后锁定 实现思路: 1.判断用户是否在黑名单,如果在黑名单提示账号锁定. 2.判断用户是否存在,如果不存在提示账号不存在. 3.判断 ...
- Django-随机验证码
Python生成随机验证码,需要使用PIL模块. 安装: 1 pip3 install pillow 基本使用 1. 创建图片 from PIL import Image img = Image.ne ...
- JAVA 开发工具 市场状况
转载:http://blog.csdn.net/hj7jay/article/details/52250755 2016 JAVA 流行的开发工具 最流行的工具并不一定是“最好的”,对于开发来说,什么 ...