题目链接:

http://codeforces.com/problemset/problem/268/E

E. Playlist

time limit per test 1 second
memory limit per test 256 megabytes
#### 问题描述
> Manao's friends often send him new songs. He never listens to them right away. Instead, he compiles them into a playlist. When he feels that his mind is open to new music, he opens the playlist and starts to listen to the songs.
>
> Of course, there are some songs that Manao doesn't particuarly enjoy. To get more pleasure from the received songs, he invented the following procedure of listening to the playlist:
>
> If after listening to some song Manao realizes that he liked it, then he remembers it and starts to listen to the next unlistened song.
> If after listening to some song Manao realizes that he did not like it, he listens to all the songs he liked up to this point and then begins to listen to the next unlistened song.
> For example, if Manao has four songs in the playlist, A, B, C, D (in the corresponding order) and he is going to like songs A and C in the end, then the order of listening is the following:
>
> Manao listens to A, he likes it, he remembers it.
> Manao listens to B, he does not like it, so he listens to A, again.
> Manao listens to C, he likes the song and he remembers it, too.
> Manao listens to D, but does not enjoy it and re-listens to songs A and C.
> That is, in the end Manao listens to song A three times, to song C twice and songs B and D once. Note that if Manao once liked a song, he will never dislike it on a subsequent listening.
>
> Manao has received n songs: the i-th of them is li seconds long and Manao may like it with a probability of pi percents. The songs could get on Manao's playlist in any order, so Manao wants to know the maximum expected value of the number of seconds after which the listening process will be over, for all possible permutations of the songs in the playlist.
#### 输入
> The first line contains a single integer n (1 ≤ n ≤ 50000). The i-th of the following n lines contains two integers, separated by a single space — li and pi (15 ≤ li ≤ 1000, 0 ≤ pi ≤ 100) — the length of the i-th song in seconds and the probability that Manao will like the song, in percents.
#### 输出
> In a single line print a single real number — the maximum expected listening time over all permutations of songs. The answer will be considered valid if the absolute or relative error does not exceed 10 - 9.
#### 样例
> **sample input**
> 3
> 150 20
> 150 50
> 100 50
>
> **sample output**
> 537.500000000

题意

有n首歌,每首听完耗时为li,喜欢它的概率为pi,每首歌至少听一遍,如果听到不喜欢听的歌,会把所有听过的喜欢听的歌都重新听一遍,问决定一个听歌的顺序使得听完歌的期望时间最大。

题解

贪心来决定听歌的顺序。

求期望用期望dp做。(全概率递推一下)

官方题解

代码

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std; const int maxn = 55555; struct Node {
double l, p;
bool operator < (const Node& tmp) const {
return l*p*(1 - tmp.p)>tmp.l*tmp.p*(1 - p);
}
}nds[maxn]; int main() {
int n;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%lf%lf", &nds[i].l, &nds[i].p);
nds[i].p /= 100;
}
//贪心
sort(nds, nds + n);
double ansExp = 0, lovedLenExp = 0;
for (int i = 0; i < n; i++) {
ansExp += nds[i].l;
//第i个对答案的贡献
ansExp += nds[i].p * 0 + (1 - nds[i].p)*lovedLenExp;
//根据全期望公式有E[i]=pi*(E[i-1]+Li)+(1-pi)*E[i-1]=E[i-1]+pi*Li。 其中E[i]表示前i个的lovedLenExp。
lovedLenExp += nds[i].p*nds[i].l;
}
printf("%.15lf\n", ansExp);
return 0;
}

纪念版

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf typedef int LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII; const int INF=0x3f3f3f3f;
const LL INFL=10000000000000000LL;
const double eps=1e-9; const double PI = acos(-1.0); //start---------------------------------------------------------------------- const int maxn=5e4+10; struct Node{
int l,p;
bool operator < (const Node& tmp) const {
return (100-tmp.p)*l*p>(100-p)*tmp.l*tmp.p;
}
}nds[maxn]; int n; int main() {
scf("%d",&n);
rep(i,0,n) scf("%d%d",&nds[i].l,&nds[i].p);
sort(nds,nds+n);
double sum=0,ans=0;
rep(i,0,n){
ans+=nds[i].l;
ans+=(1-nds[i].p*1.0/100)*sum;
sum+=nds[i].l*(nds[i].p*1.0/100);
}
prf("%.9lf\n",ans);
return 0;
} //end-----------------------------------------------------------------------

Codeforces Round #164 (Div. 2) E. Playlist 贪心+概率dp的更多相关文章

  1. Codeforces Round #388 (Div. 2) 749E(巧妙的概率dp思想)

    题目大意 给定一个1到n的排列,然后随机选取一个区间,让这个区间内的数随机改变顺序,问这样的一次操作后,该排列的逆序数的期望是多少 首先,一个随机的长度为len的排列的逆序数是(len)*(len-1 ...

  2. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

  3. Codeforces Round #272 (Div. 2) B. Dreamoon and WiFi dp

    B. Dreamoon and WiFi 题目连接: http://www.codeforces.com/contest/476/problem/B Description Dreamoon is s ...

  4. Codeforces Round #202 (Div. 1) A. Mafia 贪心

    A. Mafia Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/348/problem/A D ...

  5. Codeforces Round #164 (Div. 2)

    A. Games 模拟. B. Buttons 简单计数. C. Beautiful Sets of Points 显然每行每列只能有一个点,那么最大点数为\(1+min(n, m)\). 在不考虑\ ...

  6. Codeforces Round #382 (Div. 2)B. Urbanization 贪心

    B. Urbanization 题目链接 http://codeforces.com/contest/735/problem/B 题面 Local authorities have heard a l ...

  7. Codeforces Round #180 (Div. 2) B. Sail 贪心

    B. Sail 题目连接: http://www.codeforces.com/contest/298/problem/B Description The polar bears are going ...

  8. Codeforces Round #192 (Div. 1) A. Purification 贪心

    A. Purification Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/329/probl ...

  9. Codeforces Round #274 (Div. 1) A. Exams 贪心

    A. Exams Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/problem/A Des ...

随机推荐

  1. Win7下安装IEWebControls.msi

    编写人:CC阿爸 2014-2-22 IEWebControls.msi是发布在.net 1.1时代.微软为弥布.net控件的不足而发布一组控件.很多程序猿都喜欢用到他. 方法一: 首先保证IIS7安 ...

  2. Java应用架构的演化之路

    Java应用架构的演化之路 当我们架设一个系统的时候通常需要考虑到如何与其他系统交互,所以我们首先需要知道各种系统之间是如何交互的,使用何种技术实现. 1. 不同系统不同语言之间的交互 现 在我们常见 ...

  3. CentOS配置FTP(VSFTPD)

    一.vsftp安装篇 # 安装vsftpd yum -y install vsftpd # 启动 service vsftpd start # 开启启动 chkconfig vsftpd on 二.v ...

  4. HUE 忘记密码

    解决方法: 启动HUE的Shell /opt/cloudera/parcels/CDH/lib/hue/build/env/bin/hue shell from django.contrib.auth ...

  5. php 安装xdebug扩展

    php 扩展获取地址 http://pecl.php.net/package/ 编译安装的过程 wget http://pecl.php.net/get/xdebug-2.2.2.tgz tar -z ...

  6. C++读入两个参数

    题目内容:编写程序计算两个整数的差. 输入描述:输入数据含有不超过50个整数对,每个整数队及每对整数的运算结果都不会超过231或-231. 输出描述:对于每次读入的一对整数,输出前者减去后者的差.每个 ...

  7. 关于VS2012下安装破解文件Visual Assit X的一点说明

    今天在使用Visual Studio 2012的时候,编写代码的助手Visual Assit X突然提示我说,试用期已过,要求我输入一个注册码,我靠,这货不是几个月前已经破解了吗,怎么今天傻不愣登的提 ...

  8. DevExpress控件开发常用要点(项目总结版)

    使用DevExpress控件来做项目开发已经有很长一段时间了,在摸索开发到客户苛刻要求的过程中,其中碰到过很多问题需要解决的,随着一个个问题的解决,也留下很多对DevExpress控件的使用经验及教训 ...

  9. [.ashx檔?泛型处理例程?]基础入门#2....FileUpload上传前,预览图片(两种作法--ashx与JavaScript)

    原文出處  http://www.dotblogs.com.tw/mis2000lab/archive/2013/08/20/ashx_beginner_02_fileupload_picture_p ...

  10. 共享内存 share pool (2):BUCKET /FREE LISTS /RESERVED FREE LISTS /UNPINNED RECREATABLE CHUNKS (lru first)

    相关概念 BUCKET :每个bucket上挂有一个 chunk list.同一个BUCKET中的chunk在物理地址上是不一定相邻的 FREE LISTS:按bucket划分,共有255个,buck ...