题目链接:http://codeforces.com/problemset/problem/687/C

题目大概说给n个各有价值的硬币,要从它们中选出若干个组合成面值k,而要求的是各个方案里这些选出的硬币能组合出来的面值有哪些。

dp[i][j][k]表示到第i个硬币,组成面值为j,包含面值为k的方案数。

注意用滚动数组写。

 //#pragma comment(linker, "/STACK:102400000, 102400000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
typedef pair <int, int> P;
const int N = ;
int dp[][N][N], a[N]; int main()
{
int n, k;
scanf("%d %d", &n, &k);
for(int i = ; i <= n; ++i) {
scanf("%d", a + i);
}
dp[][][] = ;
for(int i = ; i <= n; ++i) {
for(int j = k; j >= ; --j) {
for(int x = j; x >= ; --x) {
//memset(dp[i%2], 0, sizeof(dp[i%2]));
dp[i%][j][x] |= dp[(i - )%][j][x]; //滚动数组重复使用
if(j - a[i] >= x)
dp[i%][j][x] |= dp[(i - )%][j - a[i]][x];
if(x >= a[i])
dp[i%][j][x] |= dp[(i - )%][j - a[i]][x - a[i]];
}
}
}
int cnt = , ans[];
for(int i = ; i <= k; ++i) {
if(dp[][k][i] || dp[][k][i]) {
ans[++cnt] = i;
}
}
printf("%d\n", cnt);
for(int i = ; i <= cnt; ++i) {
printf("%d%c", ans[i], i == cnt ? '\n': ' ');
}
return ;
}

Codeforces 687C. The Values You Can Make (dp)的更多相关文章

  1. Codeforces 687C The Values You Can Make(DP)

    题目大概说给n个各有价值的硬币,要从它们中选出若干个组合成面值k,而要求的是各个方案里这些选出的硬币能组合出来的面值有哪些. 有点绕.. dp[i][j][k]表示前i个硬币中 能否 组合成面值j且选 ...

  2. codeforces 687C - The Values You Can Make 简单dp

    题意:一个数组a[i],你可以挑出若干个数(只能挑一次)加起来等于k, 针对每一种方案,你可以选出这若干个数的子集来组合新数 最后所有的方案能组合出多少种数 分析:一看数据范围n,k<=500 ...

  3. CodeForces 687C The Values You Can Make

    $dp$,背包. $f[i][j][s]$表示前$i$个物品,凑出$j$价格的情况下,能否凑出$s$价格,$f[i][j][s]=1$表示能,否则不能. 转移很简单:如果$f[i][j][s]=1$, ...

  4. CodeForces 687C The Values You Can Make(动态规划)

    这个也可以说是一个01背包了,里面也有一些集合的思想在里面,首先dp方程,dp[i][j]代表着当前数值为i,j能否被构成,如果dp[i][j] = 1,那么dp[i+m][j] 和 dp[i+m][ ...

  5. Codeforces 219D. Choosing Capital for Treeland (树dp)

    题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...

  6. [CodeForces - 1272D] Remove One Element 【线性dp】

    [CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...

  7. Codeforces Round #360 (Div. 2) E. The Values You Can Make DP

    E. The Values You Can Make     Pari wants to buy an expensive chocolate from Arya. She has n coins, ...

  8. codeforces 688E E. The Values You Can Make(dp)

    题目链接: E. The Values You Can Make time limit per test 2 seconds memory limit per test 256 megabytes i ...

  9. CodeForces 687C【DP】

    题意: 给你n个数,然后让这些数相加组合,然后在这些组合的数里可以再相加组合搞出给定 k,输出这些组合的数. 思路: DP. //在枚举到第i个coin的时,dp[i][j],i 肯定能被a[i]组合 ...

随机推荐

  1. 【C#学习笔记】数组使用

    using System; namespace ConsoleApplication { class Program { static void Main(string[] args) { //int ...

  2. OGNL valueStack StackContext(ActionContext)深入分析(转+个人理解)

    //还会补充 首先要有一个意识 ,为什么要了解这个?: struts2中的表单是怎么通过表达式(EL or OGNL)来传给Action 和 拿到Action的值的. 值栈(根)对象也可以直接使用EL ...

  3. Java中原子类的实现

    Java提供的原子类是靠sun基于CAS实现的,CAS是一种乐观锁.关于乐观锁与悲观锁. 原子变量类相当于一种泛化的volatile变量,能够支持原子的和有条件的读-改-写操作.AtomicInteg ...

  4. 【转】RTSP实例解析

    原文网址:http://www.cnblogs.com/qq78292959/archive/2010/08/12/2077039.html. 核心提示:rtsp简介(ZT) Real Time St ...

  5. Oracle RAC 负载均衡测试(结合服务器端与客户端)

    Oracle RAC 负载均衡使得从客户端发起的连接能够有效地分配到监听器负载较小的实例上.有两种方式实现客户端负载均衡,一是通过配置客户端的load_balance,一是通过配置服务器端的remot ...

  6. mysql (master/slave)复制原理及配置

    1 复制概述 Mysql内建的复制功能是构建大型,高性能应用程序的基础.将Mysql的数据分布到多个系统上去,这种分布的机制,是通过将Mysql的某一台主机的数据复制到其它主机(slaves)上,并重 ...

  7. AsciiDoc

    AsciiDoc Text based document generation AsciiDoc Home Page Table of Contents Introduction Overview a ...

  8. android LinearLayout 实现两端对齐

    <?xml version="1.0″ encoding="utf-8″?> <LinearLayout xmlns:android="http://s ...

  9. linux -- 串口调试总结

    linux 串口输出调试 在某些情况下,需要同时对两台或多台Linux主机进行管理和操作.如果手头缺少足够多的键盘和显示器,那么通过一台机器的串口对其余主机进行控制不失为一种快捷.有效的方法. 下面就 ...

  10. mysql Access denied for user \'root\'@\'localhost\'”解决办法总结,下面我们对常见的出现的一些错误代码进行分析并给出解决办法,有需要的朋友可参考一下。

    mysql Access denied for user \'root\'@\'localhost\'”解决办法总结,下面我们对常见的出现的一些错误代码进行分析并给出解决办法,有需要的朋友可参考一下. ...