题意

敌人侵略r*c的地图。为了消灭敌人,可以在某一行或者某一列安置超级大炮。每一个大炮可以瞬间消灭这一行(或者列)的敌人。安装消灭第i行的大炮消费是ri。安装消灭第j行的大炮消费是ci现在有n个敌人,告诉你这n个敌人的坐标,让你同时消灭这些敌人,为你最小花费是多少。花费的定义:每个大炮消费的乘积。

思路

非常经典的最小点权覆盖集问题,同最大流建模就可以了,建模方法可见胡伯涛论文《最小割模型在信息学竞赛中的应用》。

这道题的模型转换成最小点权覆盖集的方法可见这里.

这里的点权最大是乘积的,只要对权值取对数就把乘法转换成加法了~~

代码

[cpp]
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <string>
#include <cstring>
#define MID(x,y) ((x+y)/2)
#define MEM(a,b) memset(a,b,sizeof(a))
#define REP(i, begin, m) for (int i = begin; i < begin+m; ++ i)
using namespace std;
const int MAXV = 1005;
const int MAXE = 1005;
const int oo = 0x3fffffff;

template
struct Dinic{
struct flow_node{
int u, v;
T flow;
int opp;
int next;
}arc[2*MAXE];
int vn, en, head[MAXV];
int cur[MAXV];
int q[MAXV];
int path[2*MAXE], top;
int dep[MAXV];
void init(int n){
vn = n;
en = 0;
MEM(head, -1);
}
void insert_flow(int u, int v, T flow){
arc[en].u = u;
arc[en].v = v;
arc[en].flow = flow;
arc[en].next = head[u];
head[u] = en ++;

arc[en].u = v;
arc[en].v = u;
arc[en].flow = 0;
arc[en].next = head[v];
head[v] = en ++;
}
bool bfs(int s, int t){
MEM(dep, -1);
int lq = 0, rq = 1;
dep[s] = 0;
q[lq] = s;
while(lq < rq){ int u = q[lq ++]; if (u == t){ return true; } for (int i = head[u]; i != -1; i = arc[i].next){ int v = arc[i].v; if (dep[v] == -1 && arc[i].flow > 0){
dep[v] = dep[u] + 1;
q[rq ++] = v;
}
}
}
return false;
}
T solve(int s, int t){
T maxflow = 0;
while(bfs(s, t)){
int i, j;
for (i = 1; i <= vn; i ++) cur[i] = head[i];
for (i = s, top = 0;;){
if (i == t){
int mink;
T minflow = 0x7fffffff; //要比容量的oo大
for (int k = 0; k < top; k ++) if (minflow > arc[path[k]].flow){
minflow = arc[path[k]].flow;
mink = k;
}
for (int k = 0; k < top; k ++)
arc[path[k]].flow -= minflow, arc[path[k]^1].flow += minflow;
maxflow += minflow;
top = mink;
i = arc[path[top]].u;
}
for (j = cur[i]; j != -1; cur[i] = j = arc[j].next){
int v = arc[j].v;
if (arc[j].flow && dep[v] == dep[i] + 1)
break;
}
if (j != -1){
path[top ++] = j;
i = arc[j].v;
}
else{
if (top == 0) break;
dep[i] = -1;
i = arc[path[-- top]].u;
}
}
}
return maxflow;
}
};
Dinic dinic;
double r[55], c[55];

int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
int n, m, l;
int t;
scanf("%d", &t);
while(t --){
scanf("%d %d %d", &n, &m, &l);
dinic.init(n+m+2);
REP(i, 1, n){
scanf("%lf", &r[i]);
dinic.insert_flow(n+m+1, i, log(r[i]));
}
REP(i, 1, m){
scanf("%lf", &c[i]);
dinic.insert_flow(i+n, n+m+2, log(c[i]));
}

REP(i, 1, l){
int u, v;
scanf("%d %d", &u, &v);
dinic.insert_flow(u, v+n, oo);
}
printf("%.4f\n", exp(dinic.solve(n+m+1, n+m+2)));
}
return 0;
}
[/cpp]

POJ 3308 Paratroopers (对数转换+最小点权覆盖)的更多相关文章

  1. poj 3308 Paratroopers(二分图最小点权覆盖)

    Paratroopers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8954   Accepted: 2702 Desc ...

  2. POJ - 2125 Destroying The Graph (最小点权覆盖)

    题意:给一张图,现在要删去所有的边,删去一个点的所有入边和所有出边都有其对应\(W_{i+}\)和\(W_{i-}\).求删去该图的最小花费,并输出解 分析:简而言之就是用最小权值的点集去覆盖所有的边 ...

  3. poj3308 Paratroopers 最大流 最小点权覆盖

    题意:有一个n*m的矩阵,告诉了在每一行或者每一列安装大炮的代价,每一个大炮可以瞬间消灭这一行或者这一列的所有敌人,然后告诉了敌人可能出现的L个坐标位置,问如何安置大炮,使花费最小.如果一个敌人位于第 ...

  4. POJ 3308 Paratroopers(最小点权覆盖)(对数乘转加)

    http://poj.org/problem?id=3308 r*c的地图 每一个大炮可以消灭一行一列的敌人 安装消灭第i行的大炮花费是ri 安装消灭第j行的大炮花费是ci 已知敌人坐标,同时消灭所有 ...

  5. POJ - 3308 Paratroopers (最小点权覆盖)

    题意:N*M个格点,K个位置会有敌人.每行每列都有一门炮,能打掉这一行(列)上所有的敌人.每门炮都有其使用价值.总花费是所有使用炮的权值的乘积.求最小的总花费. 若每门炮的权值都是1,就是求最小点覆盖 ...

  6. POJ 3308 Paratroopers(最大流最小割の最小点权覆盖)

    Description It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the ...

  7. poj 3308(最小点权覆盖、最小割)

    题目链接:http://poj.org/problem?id=3308 思路:裸的最小点权覆盖,建立超级源点和超级汇点,将源点与行相连,容量为这行消灭敌人的代价,将列与汇点相连,容量为这列消灭敌人的代 ...

  8. POJ - 3308 Paratroopers(最大流)

    1.这道题学了个单词,product 还有 乘积 的意思.. 题意就是在一个 m*n的矩阵中,放入L个敌军的伞兵,而我军要在伞兵落地的瞬间将其消灭.现在我军用一种激光枪组建一个防御系统,这种枪可以安装 ...

  9. POJ3308 Paratroopers(最小割/二分图最小点权覆盖)

    把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖. 此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运 ...

随机推荐

  1. Delphi托盘类 收集

    收集的两个托盘程序: 1. 托盘区就是在windows的状态栏下方显示时钟.输入法状态的地方, 要把你的程序显示在托盘区: 下面是一个托盘类,只要把下面粘贴到文本文件中,改成TrayIcon.pas, ...

  2. iOS-CALayer图片淡入淡出动画

    ]; } - (.f;          CABasicAnimation *boundsAnimation = [CABasicAnimation animationWithKeyPath:, ,  ...

  3. POJ 1538

    #include <iostream> #include <iomanip> using namespace std; ]; //拉格朗日插值算法 int main() { / ...

  4. Android 检查设备是否存在 导航栏 NavigationBar

    尊重原创.尊重作者,转载请标明出处: http://blog.csdn.net/lnb333666/article/details/41821149 目前也没有可靠的方法来检查设备上是否有导航栏.可以 ...

  5. 使用MbrFix.exe修复MBR分区表

    在卸载linux Ubuntu之前,先修复MBR,然后再删除Linux分区就可以了.而MbrFix.exe 就是这样一个Windows 修复MBR的应用程序软件,MbrFix.exe 不仅支持Wind ...

  6. 传说中的WCF(7):“单向”&“双向”

    在WCF中,服务器与客户端的通讯有单向(单工)和双向(双工)之分.要说有什么形式上的表现,那就是单向与双向生成的SOAP不同,咱们先放下代码不说.但通常情况下,我们也不太需要去研究生成的SOAP是啥样 ...

  7. BZOJ 1877: [SDOI2009]晨跑 费用流

    1877: [SDOI2009]晨跑 Description Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现在给出一 ...

  8. Java集合框架(一)

    Java中集合类的关系图:  Collection 先来集合中的最大接口——Collection 可以通过查看JDK帮助文档,了解Collection接口中的最共性的方法.通过以下代码示例演示这些方法 ...

  9. AA投资

    AA投资创建于2015年,总部位于北京,创始人成妙绮和王浩泽,专注于天使轮的技术创新驱动的TMT项目投资. 投资方向 AA投资是一家2015年才成立的风险投资机构,专注于种子轮.天使轮.Pre-A轮的 ...

  10. android-exploitme(二):安装apk熟悉测试环境

    今天我们来熟悉测试环境: 1. 下载server代码,并运行 git clone https://github.com/SecurityCompass/LabServer.git 2. 这个serve ...