机器学习实战-k近邻算法
写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版
在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下:
字典按值进行排序
- 首先仔细读完kNN算法之后,了解其是用距离来进行判别
- 程序清单2-1看不太明白,于是把具体的inX,dataSet,labels,k带进去大致明白了意思,这里不做演示
- 书上用字典进行存储,然后对字典的值进行排序,这里不太清楚故去学习了一下
这些理清楚之后,首先来看如何对字典的值进行排序:
dict1 = {'a': 1, 'b': 4, 'c': 2, 'f' : 12}
# 第一种方法,key使用lambda匿名函数取value进行排序
a = sorted(dict1.items(),key = lambda x: x[1])
b = sorted(dict1.items(),key = lambda x:x[1],reverse = True)
print(a)
print(b)
[('a', 1), ('c', 2), ('b', 4), ('f', 12)]
[('f', 12), ('b', 4), ('c', 2), ('a', 1)]
这里sorted的第一个参数为容器,传入的是items,然后第二个参数选择items的第二个值也就是这里的values
dict1 = {'a': 1, 'b': 4, 'c': 2, 'f' : 12}
# 第一种方法,key使用lambda匿名函数取value进行排序
a = sorted(dict1.keys(),key = lambda x: x[0])
b = sorted(dict1.keys(),key = lambda x:x[0],reverse = True)
print(a)
print(b)
['a', 'b', 'c', 'f']
['f', 'c', 'b', 'a']
这里请注意第一个参数容器,需和第二个参数key中排序内容对应,不能第一个选values,第二个填x[1]
?sorted
Signature: sorted(iterable, /, *, key=None, reverse=False)
Docstring:
Return a new list containing all items from the iterable in ascending order.
A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.
Type: builtin_function_or_method
如果不想使用匿名函数,也可使用itemgetter()函数按第几维进行排序
# 第二种方法使用operator的itemgetter进行排序
import operator
dict1 = {'a': 1, 'b': 4, 'c': 2, 'f' : 12}
c = sorted(dict1.items(), key=operator.itemgetter(1))
print(c)
kNN算法
在写出完整代码之前,我们还要处理一个问题:
计算出某一具体向量到各数据之间的距离之和,如何按照距离进行排序,再存储进字典中
import numpy as np
def createDataSet():
dataSet = np.array([[1,1],[1,1.2],[0,0],[0,0.2]])
labels = np.array(['A','A','B','B'])
return dataSet,labels
dataSet,labels = createDataSet()
a = np.array([0.1,0.2])-dataSet
a = a**2
a = a.sum(axis=1)
a
array([1.45, 1.81, 0.05, 0.01])
即在字典存储时,如何将上述的array按序存入?
numpy.argsort(a, axis=-1, kind=’quicksort’, order=None)
使用argsort函数即可
import numpy as np
# 数据集
def createDataSet():
dataSet = np.array([[1, 1], [1, 1.2], [0, 0], [0, 0.2]])
labels = np.array(['A', 'A', 'B', 'B'])
return dataSet, labels
dataSet, labels = createDataSet()
# print(dataSet)
# print(labels)
# 生成器
def classifier(arr, dataSet, labels, k):
new_arr = arr - dataSet
# return(new_arr)
new_arr_sqaure = new_arr ** 2
new_arr_sum = new_arr_sqaure.sum(axis=1)
# 欧氏距离,先用目标与数据集的每条相减,再平方再求和再开根号
distances = new_arr_sum ** 0.5
# return distances
# 距离进行排序,这样就能知道传入的向量与数据集中的哪个向量最近
distances_rank = distances.argsort()
# return distances_rank
generate_dict = {}
for i in range(k):
label = labels[distances_rank[i]]
# get函数如果有则正常取,没有则使用后面的参数0
generate_dict[label] = generate_dict.get(label, 0) + 1
# 对字典的值进行排序
sorted_dict = sorted(generate_dict.items(), key=lambda x: x[1], reverse=True)
print(sorted_dict)
return sorted_dict[0][0]
predict_x = np.array([0, 0.1])
result = classifier(predict_x, dataSet, labels, 3)
print(result)
最后结果
[('B', 2), ('A', 1)]
B
机器学习实战-k近邻算法的更多相关文章
- 机器学习之K近邻算法(KNN)
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...
- 【机器学习】k近邻算法(kNN)
一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Le ...
- 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)
No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...
- 机器学习之K近邻算法
K 近邻 (K-nearest neighbor, KNN) 算法直接作用于带标记的样本,属于有监督的算法.它的核心思想基本上就是 近朱者赤,近墨者黑. 它与其他分类算法最大的不同是,它是一种&quo ...
- [机器学习实战] k邻近算法
1. k邻近算法原理: 存在一个样本数据集,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对 ...
- 【机器学习】K近邻算法——多分类问题
给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该类输入实例分为这个类. KNN是通过测量不同特征值之间的距离进行分类.它的的思路是:如 ...
- 机器学习2—K近邻算法学习笔记
Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...
- 机器学习03:K近邻算法
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...
- 机器学习实战 - python3 学习笔记(一) - k近邻算法
一. 使用k近邻算法改进约会网站的配对效果 k-近邻算法的一般流程: 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据.一般来讲,数据放在txt文本文件中,按照一定的格式进 ...
随机推荐
- Linux 安装jdk1.8
Linux安装jdk1.8 总结一句话就是:下载jdk1.8 ==> 解压 ==> 配置环境变量. 一. jdk的下载,这里有两种方法: 1.去Oracle官网下载. 2.jdk1.8的 ...
- 探讨:微信小程序应该如何设计
微信小程序公测后,开发者非常热情,都有很高的期待,都想抓住这一波红利.但是热情背后需要冷静,我们需要搞清楚两个问题: 微信想要我们做什么?微信小程序可以做什么? 微信想要我们做什么? 首先来弄清楚微信 ...
- 【Android开发】Android 删除指定文件和文件夹
/** * 删除单个文件 * @param filePath 被删除文件的文件名 * @return 文件删除成功返回true,否则返回false */ public boolean deleteFi ...
- Android控件设置半透明+EditText设置默认值+ 控件居中
Android控件设置半透明 效果 代码: android:background="#50FFFFFF" 50表示50%透明 Android:EditText设置默认值 andro ...
- uni-app中实现左侧导航栏效果
HTML: 1 <view class="list"> 2 <!-- 一级 --> 3 <scroll-view class="list-l ...
- PostgreSQL常用初级技能树
1.创建表需要id自增 设置serial即可,示例: id serial not null 2.创建表没有设置后面想要再设置自增 给test表设置一个自增序列test_id_seq CREATE SE ...
- 函数 装饰器 python
今日内容概要 1.闭包函数 2.闭包函数的实际应用 3.装饰器简介(重点加难点) 4.简易版本装饰器 5.进阶版本装饰器 6.完整版本装饰器 7.装饰器模板(拷贝使用即可) 8.装饰器语法糖 9.装饰 ...
- JavaScript学习总结9
今天学习了表单提交,JQuery部分知识
- el-carousel手动切换图片
添加ref 和 点击哪个地方切换的方法 <div class="center"> <div class="pw between"& ...
- 微信开发者工具:Cannot read property 'addEventListener' of undefined 报错
点击右上角详情 有个调试基础库 当前为2.17.0 调为2.14.1 解决 如果对您有帮助,希望对面的你能点赞加评论!拜上! 若有bug还请告知,万分感谢!