Hive详解(01) - 概念

hive简介

Hive:由Facebook开源用于解决海量结构化日志的数据统计工具,是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。

Hive本质:将HQL转化成MapReduce程序

(1)Hive处理的数据存储在HDFS

(2)Hive分析数据底层的实现是MapReduce

(3)执行程序运行在Yarn上

Hive的优缺点

  • 优点

(1)操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。

(2)避免了去写MapReduce,减少开发人员的学习成本。

(3)Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。

(4)Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。

(5)Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。

  • 缺点

Hive的HQL表达能力有限

(1)迭代式算法无法表达

(2)数据挖掘方面不擅长,由于MapReduce数据处理流程的限制,效率更高的算法却无法实现。

Hive的效率比较低

(1)Hive自动生成的MapReduce作业,通常情况下不够智能化

(2)Hive调优比较困难,粒度较粗

Hive架构原理

  • 用户接口:Client

CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)、WEBUI(浏览器访问hive)

  • 元数据:Metastore

元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;

默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore

  • Hadoop

使用HDFS进行存储,使用MapReduce进行计算。

  • 驱动器:Driver

(1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。

(2)编译器(Physical Plan):将AST编译生成逻辑执行计划。

(3)优化器(Query Optimizer):对逻辑执行计划进行优化。

(4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。

Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。

Hive和 数据库比较

由于 Hive 采用了类似SQL 的查询语言 HQL(Hive Query Language),因此很容易将 Hive 理解为数据库。其实从结构上来看,Hive 和数据库除了拥有类似的查询语言,再无类似之处。下面将从多个方面来阐述 Hive 和数据库的差异。数据库可以用在 Online 的应用中,但是Hive 是为数据仓库而设计的,清楚这一点,有助于从应用角度理解 Hive 的特性。

  • 查询语言

由于SQL被广泛的应用在数据仓库中,因此,专门针对Hive的特性设计了类SQL的查询语言HQL。熟悉SQL开发的开发者可以很方便的使用Hive进行开发。

  • 数据更新

由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive中不建议对数据的改写,所有的数据都是在加载的时候确定好的。

而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO …  VALUES 添加数据,使用 UPDATE … SET修改数据。

  • 执行延迟

Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce框架。由于MapReduce 本身具有较高的延迟,因此在利用MapReduce 执行Hive查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。

  • 数据规模

由于Hive建立在集群上并可以利用MapReduce进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。

Hive详解(01) - 概念的更多相关文章

  1. DBA_Oracle Startup / Shutdown启动和关闭过程详解(概念)

    2014-08-07 Created By BaoXinjian

  2. TCP/IP详解系列 --- 概念总结01

    UDP协议  .vs.  TCP协议:  原理上:(TCP报文段. vs . UDP用户数据报) TCP协议的特性: TCP是面向连接的运输层协议,应用程序在使用TCP协议之前,必须先建立TCP连接. ...

  3. 大数据入门第十一天——hive详解(一)入门与安装

    一.基本概念 1.什么是hive The Apache Hive ™ data warehouse software facilitates reading, writing, and managin ...

  4. Hive详解

    1.   Hive基本概念 1.1  Hive简介 1.1.1 什么是Hive Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能. 1.1 ...

  5. 大数据入门第十一天——hive详解(三)hive函数

    一.hive函数 1.内置运算符与内置函数 函数分类: 查看函数信息: DESC FUNCTION concat; 常用的分析函数之rank() row_number(),参考:https://www ...

  6. 大数据入门第十一天——hive详解(二)基本操作与分区分桶

    一.基本操作 1.DDL 官网的DDL语法教程:点击查看 建表语句 CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data ...

  7. TCP/IP详解系列 --- 概念总结02

    TCP复位报文段(RST)的用途: 1.当客户端程序访问不存在的端口时,目标主机将给它发送一个复位报文段:收到复位报文段的一端应该关闭连接或者重新连接,而不能回应这个复位报文段. 2.当客户端程序向服 ...

  8. 一起学Hive——详解四种导入数据的方式

    在使用Hive的过程中,导入数据是必不可少的步骤,不同的数据导入方式效率也不一样,本文总结Hive四种不同的数据导入方式: 从本地文件系统导入数据 从HDFS中导入数据 从其他的Hive表中导入数据 ...

  9. Hadoop之Hive详解

    1.什么是Hive hive是基于hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表 并提供类sql查询功能 2.为什么要用Hive 1.直接使用hadoop所面临的问题 人员学 ...

  10. IO模型(epoll)--详解-01

    写在前面 从事服务端开发,少不了要接触网络编程.epoll作为linux下高性能网络服务器的必备技术至关重要,nginx.redis.skynet和大部分游戏服务器都使用到这一多路复用技术. 本文会从 ...

随机推荐

  1. 使用Pytorch进行多卡训练

    当一块GPU不够用时,我们就需要使用多卡进行并行训练.其中多卡并行可分为数据并行和模型并行.具体区别如下图所示: 由于模型并行比较少用,这里只对数据并行进行记录.对于pytorch,有两种方式可以进行 ...

  2. jsp页面重定向后地址栏controller名重复而导致报404错误

    今天做ssm项目时遇到了这种错误 看看代码: 无关代码省略... 22 <body> 23 <div id="container"> 24 <ifra ...

  3. 后端框架的学习----mybatis框架(6、日志)

    六.日志 如果一个数据库操作,出现了异常,我们需要排错,日志就是最好的帮手 setting设置 <settings> <setting name="logImpl" ...

  4. 知识图谱-生物信息学-医学顶刊论文(Bioinformatics-2022)-SGCL-DTI:用于DTI预测的监督图协同对比学习

    14.(2022.5.21)Bioinformatics-SGCL-DTI:用于DTI预测的监督图协同对比学习 论文标题: Supervised graph co-contrastive learni ...

  5. 40.TokenAuthentication认证

    TokenAuthentication认证介绍 TokenAuthentication是一种简单的基于令牌的HTTP认证 适用于CS架构,例如普通的桌面应用程序或移动客户端   TokenAuthen ...

  6. 27.路由器Routers

    像一些reils这样的web框架提供自动生成urls的功能,但是Django没有 rest framework为django添加了这一功能,以一种简单.快速.一致的方式 routers必须配合view ...

  7. FlinkSql之TableAPI详解

    一.FlinkSql的概念 核心概念 Flink 的 Table API 和 SQL 是流批统一的 API. 这意味着 Table API & SQL 在无论有限的批式输入还是无限的流式输入下 ...

  8. Pycharm系列---QT配置

    PYSIDE2 添加外部工具 file---settings External Tools,点击左上角的 加号+ designer 位置: envs\QT6\Lib\site-packages\PyS ...

  9. ios手机键盘拉起之后页面不会回退的问题

    在input输入框输入内容之后,点击完成,键盘下去了,可是页面没有回退回去,也就是页面会空出浏览器高度那一块,这个问题发现于ios手机中的微信浏览器.解决方案如下 <input type=&qu ...

  10. git ignore忽略规则

    目录 Git 忽略文件提交的方法 Git 忽略规则 Git 忽略规则优先级 Git 忽略规则匹配语法 常用匹配示例 多级目录忽略规则设置 .gitignore规则不生效 参考文章 Git 忽略文件提交 ...