原文转载自「刘悦的技术博客」https://v3u.cn/a_id_178

聊天机器人(ChatRobot)的概念我们并不陌生,也许你曾经在百无聊赖之下和Siri打情骂俏过,亦或是闲暇之余与小爱同学谈笑风生,无论如何,我们都得承认,人工智能已经深入了我们的生活。目前市面上提供三方api的机器人不胜枚举:微软小冰、图灵机器人、腾讯闲聊、青云客机器人等等,只要我们想,就随时可以在app端或者web应用上进行接入。但是,这些应用的底层到底如何实现的?在没有网络接入的情况下,我们能不能像美剧《西部世界》(Westworld)里面描绘的那样,机器人只需要存储在本地的“心智球”就可以和人类沟通交流,如果你不仅仅满足于当一个“调包侠”,请跟随我们的旅程,本次我们将首度使用深度学习库Keras/TensorFlow打造属于自己的本地聊天机器人,不依赖任何三方接口与网络。

首先安装相关依赖:

pip3 install Tensorflow
pip3 install Keras
pip3 install nltk

然后撰写脚本test_bot.py导入需要的库:

import nltk
import ssl
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer() import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import SGD
import pandas as pd
import pickle
import random

这里有一个坑,就是自然语言分析库NLTK会报一个错误:



Resource punkt not found

正常情况下,只要加上一行下载器代码即可

import nltk
nltk.download('punkt')

但是由于学术上网的原因,很难通过python下载器正常下载,所以我们玩一次曲线救国,手动自己下载压缩包:

https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/tokenizers/punkt.zip

解压之后,放在你的用户目录下即可:

C:\Users\liuyue\tokenizers\nltk_data\punkt

ok,言归正传,开发聊天机器人所面对的最主要挑战是对用户输入信息进行分类,以及能够识别人类的正确意图(这个可以用机器学习解决,但是太复杂,我偷懒了,所以用的深度学习Keras)。第二就是怎样保持语境,也就是分析和跟踪上下文,通常情况下,我们不太需要对用户意图进行分类,只需要把用户输入的信息当作聊天机器人问题的答案即可,所这里我们使用Keras深度学习库用于构建分类模型。

聊天机器人的意向和需要学习的模式都定义在一个简单的变量中。不需要动辄上T的语料库。我们知道如果玩机器人的,手里没有语料库,就会被人嘲笑,但是我们的目标只是为某一个特定的语境建立一个特定聊天机器人。所以分类模型作为小词汇量创建,它仅仅将能够识别为训练提供的一小组模式。

说白了就是,所谓的机器学习,就是你重复的教机器做某一件或几件正确的事情,在训练中,你不停的演示怎么做是正确的,然后期望机器在学习中能够举一反三,只不过这次我们不教它很多事情,只一件,用来测试它的反应而已,是不是有点像你在家里训练你的宠物狗?只不过狗子可没法和你聊天。

这里的意向数据变量我就简单举个例子,如果愿意,你可以用语料库对变量进行无限扩充:

intents = {"intents": [
{"tag": "打招呼",
"patterns": ["你好", "您好", "请问", "有人吗", "师傅","不好意思","美女","帅哥","靓妹","hi"],
"responses": ["您好", "又是您啊", "吃了么您内","您有事吗"],
"context": [""]
},
{"tag": "告别",
"patterns": ["再见", "拜拜", "88", "回见", "回头见"],
"responses": ["再见", "一路顺风", "下次见", "拜拜了您内"],
"context": [""]
},
]
}

可以看到,我插入了两个语境标签,打招呼和告别,包括用户输入信息以及机器回应数据。

在开始分类模型训练之前,我们需要先建立词汇。模式经过处理后建立词汇库。每一个词都会有词干产生通用词根,这将有助于能够匹配更多用户输入的组合。

for intent in intents['intents']:
for pattern in intent['patterns']:
# tokenize each word in the sentence
w = nltk.word_tokenize(pattern)
# add to our words list
words.extend(w)
# add to documents in our corpus
documents.append((w, intent['tag']))
# add to our classes list
if intent['tag'] not in classes:
classes.append(intent['tag']) words = [stemmer.stem(w.lower()) for w in words if w not in ignore_words]
words = sorted(list(set(words))) classes = sorted(list(set(classes))) print (len(classes), "语境", classes) print (len(words), "词数", words)

输出:

2 语境 ['告别', '打招呼']
14 词数 ['88', '不好意思', '你好', '再见', '回头见', '回见', '帅哥', '师傅', '您好', '拜拜', '有人吗', '美女', '请问', '靓妹']

训练不会根据词汇来分析,因为词汇对于机器来说是没有任何意义的,这也是很多中文分词库所陷入的误区,其实机器并不理解你输入的到底是英文还是中文,我们只需要将单词或者中文转化为包含0/1的数组的词袋。数组长度将等于词汇量大小,当当前模式中的一个单词或词汇位于给定位置时,将设置为1。

# create our training data
training = []
# create an empty array for our output
output_empty = [0] * len(classes)
# training set, bag of words for each sentence
for doc in documents:
# initialize our bag of words
bag = [] pattern_words = doc[0] pattern_words = [stemmer.stem(word.lower()) for word in pattern_words] for w in words:
bag.append(1) if w in pattern_words else bag.append(0) output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1 training.append([bag, output_row]) random.shuffle(training)
training = np.array(training) train_x = list(training[:,0])
train_y = list(training[:,1])

我们开始进行数据训练,模型是用Keras建立的,基于三层。由于数据基数小,分类输出将是多类数组,这将有助于识别编码意图。使用softmax激活来产生多类分类输出(结果返回一个0/1的数组:[1,0,0,…,0]–这个数组可以识别编码意图)。

model = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)

这块是以200次迭代的方式执行训练,批处理量为5个,因为我的测试数据样本小,所以100次也可以,这不是重点。

开始训练:

14/14 [==============================] - 0s 32ms/step - loss: 0.7305 - acc: 0.5000
Epoch 2/200
14/14 [==============================] - 0s 391us/step - loss: 0.7458 - acc: 0.4286
Epoch 3/200
14/14 [==============================] - 0s 390us/step - loss: 0.7086 - acc: 0.3571
Epoch 4/200
14/14 [==============================] - 0s 395us/step - loss: 0.6941 - acc: 0.6429
Epoch 5/200
14/14 [==============================] - 0s 426us/step - loss: 0.6358 - acc: 0.7143
Epoch 6/200
14/14 [==============================] - 0s 356us/step - loss: 0.6287 - acc: 0.5714
Epoch 7/200
14/14 [==============================] - 0s 366us/step - loss: 0.6457 - acc: 0.6429
Epoch 8/200
14/14 [==============================] - 0s 899us/step - loss: 0.6336 - acc: 0.6429
Epoch 9/200
14/14 [==============================] - 0s 464us/step - loss: 0.5815 - acc: 0.6429
Epoch 10/200
14/14 [==============================] - 0s 408us/step - loss: 0.5895 - acc: 0.6429
Epoch 11/200
14/14 [==============================] - 0s 548us/step - loss: 0.6050 - acc: 0.6429
Epoch 12/200
14/14 [==============================] - 0s 468us/step - loss: 0.6254 - acc: 0.6429
Epoch 13/200
14/14 [==============================] - 0s 388us/step - loss: 0.4990 - acc: 0.7857
Epoch 14/200
14/14 [==============================] - 0s 392us/step - loss: 0.5880 - acc: 0.7143
Epoch 15/200
14/14 [==============================] - 0s 370us/step - loss: 0.5118 - acc: 0.8571
Epoch 16/200
14/14 [==============================] - 0s 457us/step - loss: 0.5579 - acc: 0.7143
Epoch 17/200
14/14 [==============================] - 0s 432us/step - loss: 0.4535 - acc: 0.7857
Epoch 18/200
14/14 [==============================] - 0s 357us/step - loss: 0.4367 - acc: 0.7857
Epoch 19/200
14/14 [==============================] - 0s 384us/step - loss: 0.4751 - acc: 0.7857
Epoch 20/200
14/14 [==============================] - 0s 346us/step - loss: 0.4404 - acc: 0.9286
Epoch 21/200
14/14 [==============================] - 0s 500us/step - loss: 0.4325 - acc: 0.8571
Epoch 22/200
14/14 [==============================] - 0s 400us/step - loss: 0.4104 - acc: 0.9286
Epoch 23/200
14/14 [==============================] - 0s 738us/step - loss: 0.4296 - acc: 0.7857
Epoch 24/200
14/14 [==============================] - 0s 387us/step - loss: 0.3706 - acc: 0.9286
Epoch 25/200
14/14 [==============================] - 0s 430us/step - loss: 0.4213 - acc: 0.8571
Epoch 26/200
14/14 [==============================] - 0s 351us/step - loss: 0.2867 - acc: 1.0000
Epoch 27/200
14/14 [==============================] - 0s 3ms/step - loss: 0.2903 - acc: 1.0000
Epoch 28/200
14/14 [==============================] - 0s 366us/step - loss: 0.3010 - acc: 0.9286
Epoch 29/200
14/14 [==============================] - 0s 404us/step - loss: 0.2466 - acc: 0.9286
Epoch 30/200
14/14 [==============================] - 0s 428us/step - loss: 0.3035 - acc: 0.7857
Epoch 31/200
14/14 [==============================] - 0s 407us/step - loss: 0.2075 - acc: 1.0000
Epoch 32/200
14/14 [==============================] - 0s 457us/step - loss: 0.2167 - acc: 0.9286
Epoch 33/200
14/14 [==============================] - 0s 613us/step - loss: 0.1266 - acc: 1.0000
Epoch 34/200
14/14 [==============================] - 0s 534us/step - loss: 0.2906 - acc: 0.9286
Epoch 35/200
14/14 [==============================] - 0s 463us/step - loss: 0.2560 - acc: 0.9286
Epoch 36/200
14/14 [==============================] - 0s 500us/step - loss: 0.1686 - acc: 1.0000
Epoch 37/200
14/14 [==============================] - 0s 387us/step - loss: 0.0922 - acc: 1.0000
Epoch 38/200
14/14 [==============================] - 0s 430us/step - loss: 0.1620 - acc: 1.0000
Epoch 39/200
14/14 [==============================] - 0s 371us/step - loss: 0.1104 - acc: 1.0000
Epoch 40/200
14/14 [==============================] - 0s 488us/step - loss: 0.1330 - acc: 1.0000
Epoch 41/200
14/14 [==============================] - 0s 381us/step - loss: 0.1322 - acc: 1.0000
Epoch 42/200
14/14 [==============================] - 0s 462us/step - loss: 0.0575 - acc: 1.0000
Epoch 43/200
14/14 [==============================] - 0s 1ms/step - loss: 0.1137 - acc: 1.0000
Epoch 44/200
14/14 [==============================] - 0s 450us/step - loss: 0.0245 - acc: 1.0000
Epoch 45/200
14/14 [==============================] - 0s 470us/step - loss: 0.1824 - acc: 1.0000
Epoch 46/200
14/14 [==============================] - 0s 444us/step - loss: 0.0822 - acc: 1.0000
Epoch 47/200
14/14 [==============================] - 0s 436us/step - loss: 0.0939 - acc: 1.0000
Epoch 48/200
14/14 [==============================] - 0s 396us/step - loss: 0.0288 - acc: 1.0000
Epoch 49/200
14/14 [==============================] - 0s 580us/step - loss: 0.1367 - acc: 0.9286
Epoch 50/200
14/14 [==============================] - 0s 351us/step - loss: 0.0363 - acc: 1.0000
Epoch 51/200
14/14 [==============================] - 0s 379us/step - loss: 0.0272 - acc: 1.0000
Epoch 52/200
14/14 [==============================] - 0s 358us/step - loss: 0.0712 - acc: 1.0000
Epoch 53/200
14/14 [==============================] - 0s 4ms/step - loss: 0.0426 - acc: 1.0000
Epoch 54/200
14/14 [==============================] - 0s 370us/step - loss: 0.0430 - acc: 1.0000
Epoch 55/200
14/14 [==============================] - 0s 368us/step - loss: 0.0292 - acc: 1.0000
Epoch 56/200
14/14 [==============================] - 0s 494us/step - loss: 0.0777 - acc: 1.0000
Epoch 57/200
14/14 [==============================] - 0s 356us/step - loss: 0.0496 - acc: 1.0000
Epoch 58/200
14/14 [==============================] - 0s 427us/step - loss: 0.1485 - acc: 1.0000
Epoch 59/200
14/14 [==============================] - 0s 381us/step - loss: 0.1006 - acc: 1.0000
Epoch 60/200
14/14 [==============================] - 0s 421us/step - loss: 0.0183 - acc: 1.0000
Epoch 61/200
14/14 [==============================] - 0s 344us/step - loss: 0.0788 - acc: 0.9286
Epoch 62/200
14/14 [==============================] - 0s 529us/step - loss: 0.0176 - acc: 1.0000

ok,200次之后,现在模型已经训练好了,现在声明一个方法用来进行词袋转换:

def clean_up_sentence(sentence):
# tokenize the pattern - split words into array
sentence_words = nltk.word_tokenize(sentence)
# stem each word - create short form for word
sentence_words = [stemmer.stem(word.lower()) for word in sentence_words]
return sentence_words def bow(sentence, words, show_details=True):
# tokenize the pattern
sentence_words = clean_up_sentence(sentence)
# bag of words - matrix of N words, vocabulary matrix
bag = [0]*len(words)
for s in sentence_words:
for i,w in enumerate(words):
if w == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print ("found in bag: %s" % w)
return(np.array(bag))

测试一下,看看是否可以命中词袋:

p = bow("你好", words)
print (p)

返回值:

found in bag: 你好
[0 0 1 0 0 0 0 0 0 0 0 0 0 0]

很明显匹配成功,词已入袋。

在我们打包模型之前,可以使用model.predict函数对用户输入进行分类测试,并根据计算出的概率返回用户意图(可以返回多个意图,根据概率倒序输出):

def classify_local(sentence):
ERROR_THRESHOLD = 0.25 # generate probabilities from the model
input_data = pd.DataFrame([bow(sentence, words)], dtype=float, index=['input'])
results = model.predict([input_data])[0]
# filter out predictions below a threshold, and provide intent index
results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append((classes[r[0]], str(r[1])))
# return tuple of intent and probability return return_list

测试一下:

print(classify_local('您好'))

返回值:

found in bag: 您好
[('打招呼', '0.999913')]
liuyue:mytornado liuyue$

再测:

print(classify_local('88'))

返回值:

found in bag: 88
[('告别', '0.9995449')]

完美,匹配出打招呼的语境标签,如果愿意,可以多测试几个,完善模型。

测试完成之后,我们可以将训练好的模型打包,这样每次调用之前就不用训练了:

json_file = model.to_json()
with open('v3ucn.json', "w") as file:
file.write(json_file) model.save_weights('./v3ucn.h5f')

这里模型分为数据文件(json)以及权重文件(h5f),将它们保存好,一会儿会用到。

接下来,我们来搭建一个聊天机器人的API,这里我们使用目前非常火的框架Fastapi,将模型文件放入到项目的目录之后,编写main.py:

import random
import uvicorn
from fastapi import FastAPI
app = FastAPI() def classify_local(sentence):
ERROR_THRESHOLD = 0.25 # generate probabilities from the model
input_data = pd.DataFrame([bow(sentence, words)], dtype=float, index=['input'])
results = model.predict([input_data])[0]
# filter out predictions below a threshold, and provide intent index
results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append((classes[r[0]], str(r[1])))
# return tuple of intent and probability return return_list @app.get('/')
async def root(word: str = None): from keras.models import model_from_json
# # load json and create model
file = open("./v3ucn.json", 'r')
model_json = file.read()
file.close()
model = model_from_json(model_json)
model.load_weights("./v3ucn.h5f") wordlist = classify_local(word)
a = ""
for intent in intents['intents']:
if intent['tag'] == wordlist[0][0]:
a = random.choice(intent['responses']) return {'message':a} if __name__ == "__main__":
uvicorn.run(app, host="127.0.0.1", port=8000)

这里的:

from keras.models import model_from_json
file = open("./v3ucn.json", 'r')
model_json = file.read()
file.close()
model = model_from_json(model_json)
model.load_weights("./v3ucn.h5f")

用来导入刚才训练好的模型库,随后启动服务:

uvicorn main:app --reload

效果是这样的:

结语:毫无疑问,科技改变生活,聊天机器人可以让我们没有佳人相伴的情况下,也可以听闻莺啼燕语,相信不久的将来,笑语盈盈、衣香鬓影的“机械姬”亦能伴吾等于清风明月之下。

原文转载自「刘悦的技术博客」 https://v3u.cn/a_id_178

人工智能不过尔尔,基于Python3深度学习库Keras/TensorFlow打造属于自己的聊天机器人(ChatRobot)的更多相关文章

  1. 【深度学习】keras + tensorflow 实现猫和狗图像分类

    本文主要是使用[监督学习]实现一个图像分类器,目的是识别图片是猫还是狗. 从[数据预处理]到 [图片预测]实现一个完整的流程, 当然这个分类在 Kaggle 上已经有人用[迁移学习](VGG,Resn ...

  2. python深度学习库keras——安装

    TensorFlow安装keras需要在TensorFlow之上才能运行.所以这里安装TensorFlow.TensorFlow需要vs2015环境,需要wein64位环境,所以32位的小伙伴需要升级 ...

  3. 深度学习框架Keras与Pytorch对比

    对于许多科学家.工程师和开发人员来说,TensorFlow是他们的第一个深度学习框架.TensorFlow 1.0于2017年2月发布,可以说,它对用户不太友好. 在过去的几年里,两个主要的深度学习库 ...

  4. 64位Win7下安装并配置Python3的深度学习库:Theano

    注:本文全原创,作者:Noah Zhang  (http://www.cnblogs.com/noahzn/) 这两天在安装Python的深度学习库:Theano.尝试了好多遍,CMake.MinGW ...

  5. TensorFlow+Keras 01 人工智能、机器学习、深度学习简介

    1 人工智能.机器学习.深度学习的关系 “人工智能” 一词最早是再20世纪50年代提出来的. “ 机器学习 ” 是通过算法,使用大量数据进行训练,训练完成后会产生模型 有监督的学习 supervise ...

  6. 30个深度学习库:按Python、C++、Java、JavaScript、R等10种语言分类

    30个深度学习库:按Python.C++.Java.JavaScript.R等10种语言分类 包括 Python.C++.Java.JavaScript.R.Haskell等在内的一系列编程语言的深度 ...

  7. Python机器学习库和深度学习库总结

    我们在Github上的贡献者和提交者之中检查了用Python语言进行机器学习的开源项目,并挑选出最受欢迎和最活跃的项目. 1. Scikit-learn(重点推荐) www.github.com/sc ...

  8. 常用深度学习框——Caffe/ TensorFlow / Keras/ PyTorch/MXNet

    常用深度学习框--Caffe/ TensorFlow / Keras/ PyTorch/MXNet 一.概述 近几年来,深度学习的研究和应用的热潮持续高涨,各种开源深度学习框架层出不穷,包括Tenso ...

  9. 对话Facebook人工智能实验室主任、深度学习专家Yann LeCun

    对话Facebook人工智能实验室主任.深度学习专家Yann LeCun Yann LeCun(燕乐存),Facebook人工智能实验室主任,NYU数据科学中心创始人,计算机科学.神经科学.电子电气科 ...

随机推荐

  1. 测试open

    // 此处,返回的 undefined 是 JS 中的一个值 return undefined } // 这种写法是明确指定函数返回值类型为 void,与上面不指定返回值类型相同 const add ...

  2. Crane-scheduler:基于真实负载进行调度

    作者 邱天,腾讯云高级工程师,负责腾讯云 TKE 动态调度器与重调度器产品. 背景 原生 kubernetes 调度器只能基于资源的 resource request 进行调度,然而 Pod 的真实资 ...

  3. CF1665A GCD vs LCM

  4. 这篇SpringCloud GateWay 详解,你用的到

    点赞再看,养成习惯,微信搜索[牧小农]关注我获取更多资讯,风里雨里,小农等你,很高兴能够成为你的朋友. 项目源码地址:公众号回复 sentinel,即可免费获取源码 背景 在微服务架构中,通常一个系统 ...

  5. Kafka 的稳定性

    一.事务 1. 事务简介 1.1 事务场景 producer发的多条消息组成⼀个事务这些消息需要对consumer同时可⻅或者同时不可⻅ producer可能会给多个topic,多个partition ...

  6. JavaGUI——Java图形用户界面

    1.Java GUI 概述 GUI(Graphical User Interface,简称 GUI,图形用户界面)是指采用图形方式显示的计算机操作用户界面,与早期计算机使用的命令行界面相比,图形界面对 ...

  7. 你真的了解git的分支管理跟其他概念吗?

    现在前端要学的只是太多了,你是不是有时会有这个想法,如果我有两个大脑.一个学Vue,一个学React,然后到最后把两个大脑学的知识再合并在一起,这样就能省时间了. 哈哈,这个好像不能实现.现实点吧!年 ...

  8. 重学ES系列之函数优化

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. 关于Vue Element组件el-checkbox与el-select默认选中值的几点注意事项

    el-select 示例: 代码: <el-select v-model="doc.zhic" placeholder="请选择"> <el- ...

  10. openssl客户端编程:一个不起眼的函数导致的SSL会话失败问题

    我们目前大部分使用的openssl库还是基于TLS1.2协议的1.0.2版本系列,如果要支持更高的TLS1.3协议,就必须使用openssl的1.1.1版本或3.0版本.升级openssl库有可能会导 ...