大体上,对于HIBERNATE性能调优的主要考虑点如下:

l 数据库设计调整

l HQL优化

l API的正确使用(如根据不同的业务类型选用不同的集合及查询API)

l 主配置参数(日志,查询缓存,fetch_size, batch_size等)

l 映射文件优化(ID生成策略,二级缓存,延迟加载,关联优化)

l 一级缓存的管理

l 针对二级缓存,还有许多特有的策略

l 事务控制策略。

(下面是说明不需要回答)

1、 数据库设计

a) 降低关联的复杂性

b) 尽量不使用联合主键

c) ID的生成机制,不同的数据库所提供的机制并不完全一样

d) 适当的冗余数据,不过分追求高范式

2、 HQL优化

HQL如果抛开它同HIBERNATE本身一些缓存机制的关联,HQL的优化技巧同普通的SQL优化技巧一样,可以很容易在网上找到一些经验之谈。

3、 主配置

a) 查询缓存,同下面讲的缓存不太一样,它是针对HQL语句的缓存,即完全一样的语句再次执行时可以利用缓存数据。但是,查询缓存在一个交易系统(数据变更频繁,查询条件相同的机率并不大)中可能会起反作用:它会白白耗费大量的系统资源但却难以派上用场。

b) fetch_size,同JDBC的相关参数作用类似,参数并不是越大越好,而应根据业务特征去设置

c) batch_size同上。

d) 生产系统中,切记要关掉SQL语句打印。

4、 缓存

a) 数据库级缓存:这级缓存是最高效和安全的,但不同的数据库可管理的层次并不一样,比如,在ORACLE中,可以在建表时指定将整个表置于缓存当中。

b) SESSION缓存:在一个HIBERNATE SESSION有效,这级缓存的可干预性不强,大多于HIBERNATE自动管理,但它提供清除缓存的方法,这在大批量增加/更新操作是有效的。比如,同时增加十万条记录,按常规方式进行,很可能会发现OutofMemeroy的异常,这时可能需要手动清除这一级缓存:Session.evict以及 Session.clear

c) 应用缓存:在一个SESSIONFACTORY中有效,因此也是优化的重中之重,因此,各类策略也考虑的较多,在将数据放入这一级缓存之前,需要考虑一些前提条件:

i. 数据不会被第三方修改(比如,是否有另一个应用也在修改这些数据?)

ii. 数据不会太大

iii. 数据不会频繁更新(否则使用CACHE可能适得其反)

iv. 数据会被频繁查询

v. 数据不是关键数据(如涉及钱,安全等方面的问题)。

缓存有几种形式,可以在映射文件中配置:read-only(只读,适用于很少变更的静态数据/历史数据),nonstrict-read- write,read-write(比较普遍的形式,效率一般),transactional(JTA中,且支持的缓存产品较少)

d) 分布式缓存:同c)的配置一样,只是缓存产品的选用不同,在目前的HIBERNATE中可供选择的不多,oscache, jboss cache,目前的大多数项目,对它们的用于集群的使用(特别是关键交易系统)都持保守态度。在集群环境中,只利用数据库级的缓存是最安全的。

5、 延迟加载

a) 实体延迟加载:通过使用动态代理实现

b) 集合延迟加载:通过实现自有的SET/LIST,HIBERNATE提供了这方面的支持

c) 属性延迟加载:

6、 方法选用

a) 完成同样一件事,HIBERNATE提供了可供选择的一些方式,但具体使用什么方式,可能用性能/代码都会有影响。显示,一次返回十万条记录(List /Set/Bag/Map等)进行处理,很可能导致内存不够的问题,而如果用基于游标(ScrollableResults)或Iterator的结果集,则不存在这样的问题。

b) Session的load/get方法,前者会使用二级缓存,而后者则不使用。

c) Query和list/iterator,如果去仔细研究一下它们,你可能会发现很多有意思的情况,二者主要区别(如果使用了Spring,在 HibernateTemplate中对应find,iterator方法):

i. list只能利用查询缓存(但在交易系统中查询缓存作用不大),无法利用二级缓存中的单个实体,但list查出的对象会写入二级缓存,但它一般只生成较少的执行SQL语句,很多情况就是一条(无关联)。

ii. iterator则可以利用二级缓存,对于一条查询语句,它会先从数据库中找出所有符合条件的记录的ID,再通过ID去缓存找,对于缓存中没有的记录,再构造语句从数据库中查出,因此很容易知道,如果缓存中没有任何符合条件的记录,使用iterator会产生N+1条SQL语句(N为符合条件的记录数)

iii. 通过iterator,配合缓存管理API,在海量数据查询中可以很好的解决内存问题,如:

while(it.hasNext()){

YouObject object = (YouObject)it.next();

session.evict(youObject);

sessionFactory.evice(YouObject.class, youObject.getId());

}

如果用list方法,很可能就出OutofMemory错误了。

iv. 通过上面的说明,我想你应该知道如何去使用这两个方法了。

7、 集合的选用

在HIBERNATE 3.1文档的“19.5. Understanding Collection performance”中有详细的说明。

8、 事务控制

事务方面对性能有影响的主要包括:事务方式的选用,事务隔离级别以及锁的选用

a) 事务方式选用:如果不涉及多个事务管理器事务的话,不需要使用JTA,只有JDBC的事务控制就可以。

b) 事务隔离级别:参见标准的SQL事务隔离级别

c) 锁的选用:悲观锁(一般由具体的事务管理器实现),对于长事务效率低,但安全。乐观锁(一般在应用级别实现),如在HIBERNATE中可以定义 VERSION字段,显然,如果有多个应用操作数据,且这些应用不是用同一种乐观锁机制,则乐观锁会失效。因此,针对不同的数据应有不同的策略,同前面许多情况一样,很多时候我们是在效率与安全/准确性上找一个平衡点,无论如何,优化都不是一个纯技术的问题,你应该对你的应用和业务特征有足够的了解。

9、 批量操作

即使是使用JDBC,在进行大批数据更新时,BATCH与不使用BATCH有效率上也有很大的差别。我们可以通过设置batch_size来让其支持批量操作。

举个例子,要批量删除某表中的对象,如“delete Account”,打出来的语句,会发现HIBERNATE找出了所有ACCOUNT的ID,再进行删除,这主要是为了维护二级缓存,这样效率肯定高不了,在后续的版本中增加了bulk delete/update,但这也无法解决缓存的维护问题。也就是说,由于有了二级缓存的维护问题,HIBERNATE的批量操作效率并不尽如人意!

从前面许多要点可以看出,很多时候我们是在效率与安全/准确性上找一个平衡点,无论如何,优化都不是一个纯技术的问题,你应该对你的应用和业务特征有足够的了解,一般的,优化方案应在架构设计期就基本确定,否则可能导致没必要的返工,致使项目延期,而作为架构师和项目经理,还要面对开发人员可能的抱怨,必竟,我们对用户需求更改的控制力不大,但技术/架构风险是应该在初期意识到并制定好相关的对策。

还有一点要注意,应用层的缓存只是锦上添花,永远不要把它当救命稻草,应用的根基(数据库设计,算法,高效的操作语句,恰当API的选择等)才是最重要的。

 

如何进行Hibernate的性能优化?的更多相关文章

  1. Hibernate的性能优化问题笔记

    性能优化 1.注意session.clear()的运用.尤其是不断分页循环的情况下. a)在一个大集合中进行遍历,遍历取出数据或者对象 b)java会引起内存泄漏吗?在语法上是不可能出现内存泄露的,因 ...

  2. Spring/Hibernate 应用性能优化的7种方法

    对于大多数典型的 Spring/Hibernate 企业应用而言,其性能表现几乎完全依赖于持久层的性能.此篇文章中将介绍如何确认应用是否受数据库约束,同时介绍七种常用的提高应用性能的速成法.本文系 O ...

  3. Hibernate的性能优化问题

    本文是根据Hibernate帮助文档,以及一些书籍及项目经验整理而成,只提供要点和思路,具体做法可以留言探讨,或是找一些更详细更有针对性的资料. 初用Hibernate的人也许都遇到过性能问题,实现同 ...

  4. Hibernate性能优化之EHCache缓存

    像Hibernate这种ORM框架,相较于JDBC操作,需要有更复杂的机制来实现映射.对象状态管理等,因此在性能和效率上有一定的损耗. 在保证避免映射产生低效的SQL操作外,缓存是提升Hibernat ...

  5. 8.Hibernate性能优化

    性能优化 1.注意session.clear() 的运用,尤其在不断分页的时候 a) 在一个大集合中进行遍历,遍历msg,取出其中额含有敏感字样的对象 b) 另外一种形式的内存泄漏( //面试题:Ja ...

  6. JVM内存模型和性能优化 转

    JVM内存模型和性能优化 JVM内存模型优点 内置基于内存的并发模型:      多线程机制 同步锁Synchronization 大量线程安全型库包支持 基于内存的并发机制,粒度灵活控制,灵活度高于 ...

  7. Hibernate批处理操作优化 (批量插入、更新与删除)

    问题描述 我开发的网站加了个新功能:需要在线上处理表数据的批量合并和更新,昨天下午发布上线,执行该功能后,服务器的load突然增高,变化曲线异常,SA教育了我一番,让我尽快处理,将CPU负载降低. 工 ...

  8. Java内存溢出优化性能优化

    高性能应用构成了现代网络的支柱.LinkedIn有许多内部高吞吐量服务来满足每秒数千次的用户请求.要优化用户体验,低延迟地响应这些请求非常重要. 比如说,用户经常用到的一个功能是了解动态信息——不断更 ...

  9. Confluence 6 性能优化

    这个页面帮助你对应用性能进行提升需要进行的一些操作.这个页面不是为你对 Confluence 出现问题后进行问题修复的指南.如果你的 Confluence 崩溃的话,请查看Troubleshootin ...

随机推荐

  1. Redis——入门学习笔记

    Redis学习 说到前面:这篇笔记只是我作为一个Redis新手,从0到认知的一个过程.后续会持续深入学习. 学习初衷和计划 学习Redis,因为这是热门技术,必须掌握的技术,别人都会我不会.就这一点就 ...

  2. 【一天一个小知识10/20】Unity安卓获取麦克风并录音保存。

    2021-10-20 10:42:16 #region 模块信息 // **************************************************************** ...

  3. RENIX 软件如何进行IP地址管理——网络测试仪实操

    本文主要介绍了BIGTAO网络测试仪如何通过RENIX软件进行IP地址管理.文章分为五部分内容,第一部分介绍了如何通过机框显示屏查看IP地址,之后几部分分别介绍了机框按钮修改.机框接显示器/键盘修改. ...

  4. 【c# 操作符】- nameof用法

    最重要的是nameof不会影响性能! nameof有什么用?主要用解决 类成员名做参数替代成员们的字符串做参数,如下: using System; namespace csharp6 { intern ...

  5. VT 入门篇——最小 VT 实现(上)

    写在前面   此系列是本人一个字一个字码出来的,包括示例和实验截图.由于系统内核的复杂性,故可能有错误或者不全面的地方,如有错误,欢迎批评指正,本教程将会长期更新. 如有好的建议,欢迎反馈.码字不易, ...

  6. Arava: 用 swing 写一个取色器

    备哥以前发我了一个小工具,TakeColor 取色器.来复刻一个吧. 分析一下:顶部是菜单,左侧框显示当前鼠标所在的颜色(下面显示当前坐标和颜色值,默认RGB),中间框显示鼠标周围区域,右侧显示取色的 ...

  7. kubernetes配置后端存储 rook-ceph

    一 Rook概述 1.1 Ceph简介 Ceph是一种高度可扩展的分布式存储解决方案,提供对象.文件和块存储.在每个存储节点上,将找到Ceph存储对象的文件系统和Ceph OSD(对象存储守护程序)进 ...

  8. Pycharm:集体缩进、注释、折叠

    1.集体缩进 选中代码块,按TAB 2.集体前移 选中代码块,Shift TAB 3.集体注释 选中代码块,CTRL + / 4.取消集体注释 再按一下CTRL+/ 5.集体折叠 CTRL+SHIFT ...

  9. Goland的GC回收机制

    Goland的GC回收机制 GC触发的条件 阈值:默认内存扩大一倍,启动gc 定期:默认2min触发一次gc,src/runtime/proc.go:forcegcperiod 手动:runtime. ...

  10. C# NPOI导出数据到Excel

    1 public void Export() 2 { 3 //创建工作簿对象 4 IWorkbook workbook = new XSSFWorkbook(); 5 6 ExportStatisti ...