设 \(f(i)\) 表示大小为 \(k\),\(\gcd\) 为 \(i\) 的方案数。\(F(i)\) 表示大小为 \(k\),\(\gcd\) 为 \(i\) 的倍数的方案数。

不难看出:\(F(i) = \sum \limits _{i | d} f(d)\)。同时记 \(w_i\) 为数列中 \(i\) 的倍数的个数,则 \(F(i) = \dbinom {w_i} {k}\)。

可以莫反对吧。

\[\begin {align}
f (i) &= \sum _{i | d} F(d) \mu(\frac {d} {i})
\\
\mathrm{Ans} &= \sum _{i = 1} ^{k} i \times f(i) = \sum _{i = 1} ^{k} i \sum _{i | d}\mu (\frac {d} {i}) \times \dbinom {w_d} {k}
\end {align}
\]

有插入操作,不难发现每加入一个数只会让若干个 \(w_x\) 加上 \(1\)。

注意到这部分的贡献,应该为 \(a \times b\),其中 \(a = \dbinom {w_x + 1} {k} - \dbinom {w_x} {k}\),而 \(b = \sum \limits _{i | x} i \times \mu ({\frac {x} {i}})\)。

而 \(b\) 可以看出是 \(\mu\) 和 \(\mathrm{Id}\) 的卷积,也就是 \(\varphi\) ,可以线性筛预处理。

#include <cstdio>

typedef long long LL;
int Abs (int x) { return x < 0 ? -x : x; }
int Max (int x, int y) { return x > y ? x : y; }
int Min (int x, int y) { return x < y ? x : y; } int Read () {
int x = 0, k = 1;
char s = getchar ();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar ();
}
while ('0' <= s && s <= '9')
x = (x << 3) + (x << 1) + (s ^ 48), s = getchar ();
return x * k;
} void Write (int x) {
if (x < 0)
putchar ('-'), x = -x;
if (x > 9)
Write (x / 10);
putchar (x % 10 + '0');
} void Print (int x, char s) { Write (x), putchar (s); } const int Mod = 1e9 + 7;
const int Maxn = 1e6 + 5; bool Flag[Maxn];
int Num[Maxn], Inv[Maxn], Fac[Maxn], Phi[Maxn], Cnt[Maxn], Len = 0; int C (int n, int m) { return n < m ? 0 : (LL)Fac[n] * Inv[n - m] % Mod * Inv[m] % Mod; } void Init () {
Flag[1] = true, Phi[1] = 1;
for (int i = 2; i < Maxn; i++) {
if (!Flag[i])
Num[++Len] = i, Phi[i] = i - 1;
for (int j = 1; j <= Len; j++) {
if (i * Num[j] >= Maxn)
break;
Flag[i * Num[j]] = true;
if (i % Num[j] == 0) {
Phi[i * Num[j]] = Phi[i] * Num[j];
break;
}
Phi[i * Num[j]] = Phi[i] * Phi[Num[j]];
}
}
Inv[1] = 1;
for (int i = 2; i < Maxn; i++)
Inv[i] = (LL)(Mod - Mod / i) * Inv[Mod % i] % Mod;
Fac[0] = 1, Inv[0] = 1;
for (int i = 1; i < Maxn; i++) {
Fac[i] = (LL)Fac[i - 1] * i % Mod;
Inv[i] = (LL)Inv[i - 1] * Inv[i] % Mod;
}
} int main () {
Init ();
int n = Read (), k = Read (), q = Read (), Res = 0;
for (int i = 1, x; i <= n; i++) {
x = Read ();
for (int j = 1; j * j <= x; j++) {
if (x % j)
continue;
Cnt[j]++, Res = (Res + (LL)Phi[j] * (C (Cnt[j], k) - C (Cnt[j] - 1, k) + Mod) % Mod) % Mod;
if (j * j != x)
Cnt[x / j]++, Res = (Res + (LL)Phi[x / j] * (C (Cnt[x / j], k) - C (Cnt[x / j] - 1, k) + Mod) % Mod) % Mod;
}
}
for (int i = 1, x; i <= q; i++) {
x = Read ();
for (int j = 1; j * j <= x; j++) {
if (x % j)
continue;
Cnt[j]++, Res = (Res + (LL)Phi[j] * (C (Cnt[j], k) - C (Cnt[j] - 1, k) + Mod) % Mod) % Mod;
if (j * j != x)
Cnt[x / j]++, Res = (Res + (LL)Phi[x / j] * (C (Cnt[x / j], k) - C (Cnt[x / j] - 1, k) + Mod) % Mod) % Mod;
}
Print (Res, '\n');
}
return 0;
}

Solution -「CF645F」Cowslip Collections的更多相关文章

  1. Solution -「构造」专练

    记录全思路过程和正解分析.全思路过程很 navie,不过很下饭不是嘛.会持续更新的(应该). 「CF1521E」Nastia and a Beautiful Matrix Thought. 要把所有数 ...

  2. Solution -「原创」Destiny

    题目背景 题目背景与题目描述无关.签到愉快. 「冷」 他半靠在床沿,一缕感伤在透亮的眼眸间荡漾. 冷见惆怅而四散逃去.经历嘈杂喧嚣,感官早已麻木.冷又见空洞而乘隙而入.从里向外,这不是感官的范畴. 他 ...

  3. Solution -「GLR-R2」教材运送

    \(\mathcal{Description}\)   Link.   给定一棵包含 \(n\) 个点,有点权和边权的树.设当前位置 \(s\)(初始时 \(s=1\)),每次在 \(n\) 个结点内 ...

  4. Solution -「WF2011」「BZOJ #3963」MachineWorks

    \(\mathcal{Description}\)   Link.   给定你初始拥有的钱数 \(C\) 以及 \(N\) 台机器的属性,第 \(i\) 台有属性 \((d_i,p_i,r_i,g_i ...

  5. Solution -「LOCAL」二进制的世界

    \(\mathcal{Description}\)   OurOJ.   给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...

  6. Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡

    \(\mathcal{Description}\)   link.   有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树.对 \(10^9+ ...

  7. Solution -「LOCAL」大括号树

    \(\mathcal{Description}\)   OurTeam & OurOJ.   给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...

  8. Solution -「ZJOI2012」「洛谷 P2597」灾难

    \(\mathcal{Description}\)   link.   给定一个捕食网络,对于每个物种,求其灭绝后有多少消费者失去所有食物来源.(一些名词与生物学的定义相同 w.)   原图结点数 \ ...

  9. Solution -「JSOI2008」「洛谷 P4208」最小生成树计数

    \(\mathcal{Description}\)   link.   给定带权简单无向图,求其最小生成树个数.   顶点数 \(n\le10^2\),边数 \(m\le10^3\),相同边权的边数不 ...

随机推荐

  1. 【ACM程序设计】差分

    差分 假设有一个数列,我们需要对数列中的一个区间加上或减去一个值,直接想到的便是对该区间进行一次循环逐项加减. 但是当请求的操作变得非常多的时候,每次请求都进行一次循环会很容易爆时间,因此我们引入了差 ...

  2. lab_1 清华大学ucore bootload启动ucore os(预备基础知识+实验过程)

    实验1 :bootload启动ucore os 1.0实验内容: lab1中包含一个bootloader和一个OS.这个bootloader可以切换到X86保护模式,能够读磁盘并加载ELF执行文件格式 ...

  3. 一款高速的NET版的离线免费OCR

    PaddleOCR.Onnx 一款基于Paddle的OCR,项目使用ONNX模型,速度更快.本项目同时支持X64和X86的CPU上使用.本项目是一个基于PaddleOCR的C++代码修改并封装的.NE ...

  4. 手把手带你自定义 Gradle 插件 —— Gradle 系列(2)

    请点赞加关注,你的支持对我非常重要,满足下我的虚荣心. Hi,我是小彭.本文已收录到 GitHub · Android-NoteBook 中.这里有 Android 进阶成长知识体系,有志同道合的朋友 ...

  5. 189. Rotate Array - LeetCode

    Question 189. Rotate Array Solution 题目大意:数组中最后一个元素移到第一个,称动k次 思路:用笨方法,再复制一个数组 Java实现: public void rot ...

  6. 112_Power Pivot 销售订单按 sku 订单类型特殊分类及占比相关

    博客:www.jiaopengzi.com 焦棚子的文章目录 请点击下载附件 一.背景 经过了一个双十一后,天天面对的都是订单.于是有了关于销售订单按sku类型分类的需求. 说明:(暂且不讨论这样分类 ...

  7. 如何实现将拖动物体限制在某个圆形内--实现方式vue3.0

    如何实现蓝色小圆可拖动,并且边界限制在灰色大圆内?如下所示 需求源自 业务上遇到一个组件需求,设计师设计了一个"脸型整合器"根据可拖动小圆的位置与其它脸型的位置关系计算融合比例 如 ...

  8. 攻防世界pwn题:forgot

    0x00:查看文件信息 该文件是32位的,canary和PIE保护机制没开. 0x01:用IDA进行静态分析 总览: 该函数就是:v5初值为1,对v2输入一串字符.然后执行一个会根据输入的字符串而修改 ...

  9. MySQL数据库4

    内容概要 查询关键字 查询关键字之having过滤 查询关键字之distinct去重 查询关键字之order by排序 查询关键字之limit分页 查询关键字之regexp正则 多表查询思路 可视化软 ...

  10. JAVA用for循环打印*三角形

    public class Sanjiaoxing { //本节为for循环的嵌套结构练习 public static void main(String[] args) { // TODO Auto-g ...