题目链接

http://poj.org/problem?id=3268

题意

有向图中有n个结点,编号1~n,输入终点编号x,求其他结点到x结点来回最短路长度的最大值。

思路

最短路问题,有1000个结点,Floyd算法应该会超时,我刚开始使用的Dijkstra算法也超时,原因是因为我使用一个循环遍历结点1~n,每次遍历我都使用两次Dijkstra求i到x和x到i的最短路,时间复杂度太高。降低时间复杂度的方法是先在原矩阵的基础上使用dijkstra求结点x到其余各点的最短路径,然后将矩阵转置,在转置矩阵的基础上使用dijkstra求结点x到其余各点的最短路径,这就相当于在原矩阵上求其余各点到x的最短路径,将两次得到的最短路径的值相加取最大值即可。这题也可以使用SPFA算法解决。

代码

SPFA算法:

 #include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#include <vector>
using namespace std; struct Edge
{
int s, e, dist; Edge() {}
Edge(int s, int e, int d) :s(s), e(e), dist(d) {}
}; const int INF = 0x3f3f3f;
const int N = + ;
vector<Edge> v[N];
int dist[N];
int visit[N];
int n, m, x; int spfa(int s, int e) //返回从结点s到结点e的最短路
{
queue<int> q;
memset(visit, , sizeof(visit));
memset(dist, INF, sizeof(dist));
q.push(s);
visit[s] = ;
dist[s] = ; while (!q.empty())
{
int s = q.front();
q.pop();
visit[s] = ;
for (int i = ; i < v[s].size(); i++)
{
int e = v[s][i].e;
if (dist[e] > dist[s] + v[s][i].dist)
{
dist[e] = dist[s] + v[s][i].dist;
if (!visit[e])
{
visit[e] = ;
q.push(e);
}
}
}
}
return dist[e];
} int main()
{
//freopen("poj3268.txt", "r", stdin);
while (scanf("%d%d%d", &n, &m, &x) == )
{
int a, b, d;
for (int i = ; i < m; i++)
{
scanf("%d%d%d", &a, &b, &d);
v[a].push_back(Edge(a, b, d));
}
int ans = -;
for (int i = ; i <= n; i++)
{
if (i != x)
{
int dist1 = spfa(i, x);
int dist2 = spfa(x, i);
ans = max(ans, dist1 + dist2);
}
}
printf("%d\n", ans);
}
return ;
}

Dijkstra算法:

 #include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; const int INF = 0x3f3f3f;
const int N = + ;
int map[N][N];
int dist[N], reverse_dist[N]; //记录x到其余各点的最短路径,和其余各点到x的最短路径
int visit[N];
int n, m, x; void dijkstra(int s)
{
memset(visit, , sizeof(visit));
for (int i = ; i <= n; i++)
dist[i] = map[s][i];
dist[s] = ;
visit[s] = ; int min_dist, now = s;
for (int i = ;i <= n; i++)
{
min_dist = INF;
for (int j = ; j <= n; j++)
{
if (!visit[j] && dist[j] < min_dist)
{
min_dist = dist[j];
now = j;
}
}
if (min_dist == INF) break;
visit[now] = ;
for (int j = ; j <= n; j++)
dist[j] = min(dist[j], dist[now] + map[now][j]);
}
} void reverse_map() //将原矩阵转置
{
for (int i = ;i <= n; i++)
{
for (int j = i + ; j <= n; j++)
{
int t = map[i][j];
map[i][j] = map[j][i];
map[j][i] = t;
}
}
} int main()
{
//freopen("poj3268.txt", "r", stdin);
while (scanf("%d%d%d", &n, &m, &x) == )
{
memset(map, INF, sizeof(map));
int a, b, d;
for (int i = ; i < m; i++)
{
scanf("%d%d%d", &a, &b, &d);
map[a][b] = d;
}
dijkstra(x);
for (int i = ; i <= n; i++)
reverse_dist[i] = dist[i];
reverse_map();
dijkstra(x);
int ans = -;
for (int i = ; i <= n; i++)
if (i != x)
ans = max(ans, dist[i] + reverse_dist[i]);
printf("%d\n", ans);
}
return ;
}

poj3268 Silver Cow Party(两次SPFA || 两次Dijkstra)的更多相关文章

  1. poj3268 Silver Cow Party (SPFA求最短路)

    其实还是从一个x点出发到所有点的最短路问题.来和回只需分别处理一下逆图和原图,两次SPFA就行了. #include<iostream> #include<cstdio> #i ...

  2. POJ3268 Silver Cow Party(dijkstra+矩阵转置)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15156   Accepted: 6843 ...

  3. POJ3268 Silver Cow Party —— 最短路

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  4. POJ3268 Silver Cow Party (建反图跑两遍Dij)

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big co ...

  5. poj3268 Silver Cow Party(两次dijkstra)

    https://vjudge.net/problem/POJ-3268 一开始floyd超时了.. 对正图定点求最短,对逆图定点求最短,得到任意点到定点的往返最短路. #include<iost ...

  6. POJ-3268 Silver Cow Party---正向+反向Dijkstra

    题目链接: https://vjudge.net/problem/POJ-3268 题目大意: 有编号为1-N的牛,它们之间存在一些单向的路径.给定一头牛的编号X,其他牛要去拜访它并且拜访完之后要返回 ...

  7. POJ3268 Silver Cow Party Dijkstra最短路

    Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to atten ...

  8. poj3268 Silver Cow Party(农场派对)

    题目描述 原题来自:USACO 2007 Feb. Silver N(1≤N≤1000)N (1 \le N \le 1000)N(1≤N≤1000) 头牛要去参加一场在编号为 x(1≤x≤N)x(1 ...

  9. POJ3268 Silver Cow Party【最短路】

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big co ...

随机推荐

  1. jQuery中下拉框select的操作方法详解

    最近在写页面的时候常常遇到要动态增删改下拉框select的情况,由于我比较习惯用jquery框架来架构我的前端js,所以就顺便把各种jquery操作下拉框select的方法总结了一下,收藏起来以便下次 ...

  2. <P>标签小细节

    html标签对大小写不敏感. 注释:浏览器会自动地在段落的前后添加空行.(<p> 是块级元素) 提示:使用空的段落标记 <p></p> 去插入一个空行是个坏习惯.用 ...

  3. HDU 2102 A计划 (深搜)

    题目链接 Problem Description 可怜的公主在一次次被魔王掳走一次次被骑士们救回来之后,而今,不幸的她再一次面临生命的考验.魔王已经发出消息说将在T时刻吃掉公主,因为他听信谣言说吃公主 ...

  4. java保存json格式数据,保存字符串和读取字符串

    1.java保存json格式数据,保存字符串和读取字符串 import java.io.*; class RWJson { public void wiite(String s, String toS ...

  5. python 面试题3

    注:本面试题来源于网络. 1.python下多线程的限制以及多进程中传递参数的方式 python多线程有个全局解释器锁(global interpreter lock),这个锁的意思是任一时间只能有一 ...

  6. js原生选择class DOM元素

    document.querySelector(".demo"); querySelector() 方法返回匹配指定选择器的第一个元素.如果需要返回所有的元素,使用 querySel ...

  7. 内核工具 – Sparse 简介【转】

    转自:http://www.cnblogs.com/wang_yb/p/3575039.html Sparse是内核代码静态分析工具, 能够帮助我们找出代码中的隐患. 主要内容: Sparse 介绍 ...

  8. C# 读取指定文件夹下所有文件

    #region 读取文件 //返回指定目录中的文件的名称(绝对路径) string[] files = System.IO.Directory.GetFiles(@"D:\Test" ...

  9. C/C++杂记:运行时类型识别(RTTI)与动态类型转换原理

    运行时类型识别(RTTI)的引入有三个作用: 配合typeid操作符的实现: 实现异常处理中catch的匹配过程: 实现动态类型转换dynamic_cast. 1. typeid操作符的实现 1.1. ...

  10. axios通过django的csrf验证

    django会在浏览器的cookie里面保存一项csrftoken=GvzB3ilhlgadishmascacsilreclherlkjhaklsdv3qx4M96XRG88omScDPQaKoMxJ ...