题目:http://www.spoj.com/problems/BALNUM/en/

题意:找出区间[A, B]内所有奇数字出现次数为偶数,偶数字出现次数为计数的数的个数。

分析:

  明显的数位dp题,首先,只有3种状态(0:没出现过, 1:数字出现奇数次, 2:数字出现偶数次),所以, 0~9 出现的次数就可以用3进制表示,最大的数就是 310 ,那么我们就可以把1019 哈希到310 内了。其中,我们可以假设:

(0:30  ,1:31 , 2:32 , .... , 9: 39

  当第一次出现是,就把次数 +1, 否则,奇数变偶数(1-->2),偶数变奇数(2-->1)。因此,每个数字的变化在0~2内,3进制不会有冲突产生。

  设记忆化数组f[20][310], 就是f[i][s] 表示取了前 i 位数字哈希后值为 s 的方法数。

代码:

 #include <iostream>
#include <cstdio>
#include <cstring> using namespace std;
typedef unsigned long long ull;
const int N = ; ull f[N][];
int dg[N]; int check(int s) {
int nu[];
for(int i = ; i < ; ++i) {
int k = s % ;
s /= ;
if(!k) continue;
if((i&) && (k==)) return ;
if(!(i&) && (k==)) return ;
}
return ;
} int new_s(int d, int s) {
int nu[];
for(int i = ; i < ; ++i, s /= ) nu[i] = s % ; if(nu[d] == ) nu[d] = ;
else nu[d] = - nu[d];
for(int i = ; i > -; --i) s = s * + nu[i];
return s;
} ull dfs(int i, int s, bool flag, bool e) {
if(i == -) return check(s);
if(!e && ~f[i][s]) return f[i][s];
int res = ;
int u = e ? dg[i] : ;
for(int d = ; d <= u; ++d) {
res += dfs(i-, (flag==&&d==) ? : new_s(d, s), flag||d>, e&&d==u);
}
return e ? res : f[i][s] = res;
} ull solve(ull x) {
int len = ;
for( ; x; x /= ) dg[len++] = x % ;
return dfs(len-, , , );
} int main()
{
int T;
scanf("%d", &T);
ull a, b;
memset(f, -, sizeof f);
while(T--) {
scanf("%llu %llu", &a, &b);
printf("%llu\n", solve(b)-solve(a-));
}
return ;
}

SPOJ BALNUM Balanced Numbers (数位dp)的更多相关文章

  1. SPOJ BALNUM - Balanced Numbers - [数位DP][状态压缩]

    题目链接:http://www.spoj.com/problems/BALNUM/en/ Time limit: 0.123s Source limit: 50000B Memory limit: 1 ...

  2. SPOJ10606 BALNUM - Balanced Numbers(数位DP+状压)

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a ...

  3. spoj 10606 Balanced Numbers 数位dp

    题目链接 一个数称为平衡数, 满足他各个数位里面的数, 奇数出现偶数次, 偶数出现奇数次, 求一个范围内的平衡数个数. 用三进制压缩, 一个数没有出现用0表示, 出现奇数次用1表示, 出现偶数次用2表 ...

  4. SPOJ - BALNUM Balanced Numbers(数位dp+三进制状压)

    Balanced Numbers Balanced numbers have been used by mathematicians for centuries. A positive integer ...

  5. SPOJ - BALNUM - Balanced Numbers(数位DP)

    链接: https://vjudge.net/problem/SPOJ-BALNUM 题意: Balanced numbers have been used by mathematicians for ...

  6. spoj Balanced Numbers(数位dp)

    一个数字是Balanced Numbers,当且仅当组成这个数字的数,奇数出现偶数次,偶数出现奇数次 一下子就相到了三进制状压,数组开小了,一直wa,都不报re, 使用记忆化搜索,dp[i][s] 表 ...

  7. Balanced Numbers (数位DP)

    Balanced Numbers https://vjudge.net/contest/287810#problem/K Balanced numbers have been used by math ...

  8. SPOJ BALNUM Balanced Numbers(数位DP+状态压缩)题解

    思路: 把0~9的状态用3进制表示,数据量3^10 代码: #include<cstdio> #include<map> #include<set> #includ ...

  9. SPOJ BALNUM Balanced Numbers 平衡数(数位DP,状压)

    题意: 平衡树定义为“一个整数的某个数位若是奇数,则该奇数必定出现偶数次:偶数位则必须出现奇数次”,比如 222,数位为偶数2,共出现3次,是奇数次,所以合法.给一个区间[L,R],问有多少个平衡数? ...

随机推荐

  1. 解读Python编程中的命名空间与作用域

    变量是拥有匹配对象的名字(标识符).命名空间是一个包含了变量名称们(键)和它们各自相应的对象们(值)的字典.一个Python表达式可以访问局部命名空间和全局命名空间里的变量.如果一个局部变量和一个全局 ...

  2. PHP版本对比【转】

    其他历史http://www.cnblogs.com/yjf512/p/3588466.html php5.3 改动: 1.realpath() 现在是完全与平台无关的. 结果是非法的相对路径比如FI ...

  3. PHP使用Sublime Text3技巧

    1 下载安装 2 安装Package Control 3 安装插件 4 快捷键 5 项目管理 6 设置代理 PHP开发时,笔者用过EditPlus3.Nodpad++.Vi.Vim和Netbeans, ...

  4. Alpha发布PSP Daily评价总结报告

    Alpha发布PSP Daily评价总结报告 优点: 1.用户人群较为明确,定位较为准确. 2.亮点:暂停任务时是无法结束当前任务的. 3.说明书写的详细.语言流畅.能实现的功能都体现出来. 4.下拉 ...

  5. SpringMvc跨域支持

    SpringMvc跨域支持 在controller层加上注解@CrossOrigin可以实现跨域 该注解有两个参数 1,origins  : 允许可访问的域列表 2,maxAge:飞行前响应的缓存持续 ...

  6. 2018-2019-20172329 《Java软件结构与数据结构》第七周学习总结

    2018-2019-20172329 <Java软件结构与数据结构>第七周学习总结 教材学习内容总结 <Java软件结构与数据结构>第十一章-二叉查找树 一.概述 1.什么是二 ...

  7. Structs2笔记①--structs的背景、structs2框架的意义、第一个helloworld

    Struts2的背景 由出色稳定的框架struts1和webwork框架整合而来的 吸取了两大框架的优点 提高了开发的效率和规范性 更好的实现了MVC架构 解除了与servlet的强耦合性 使用str ...

  8. Leetcode题库——28.实现strStr()

    @author: ZZQ @software: PyCharm @file: strStr.py @time: 2018/11/6 20:04 要求:给定一个 haystack 字符串和一个 need ...

  9. xpath 去除空格

    normalize,字面意思就是正规化 加入space  大概意思就是空格的处理了 官方解释是这样的: 通过去掉前导和尾随空白并使用单个空格替换一系列空白字符,使空白标准化.如果省略了该参数,上下文节 ...

  10. [转帖]nvidia nvlink互联与nvswitch介绍

    nvidia nvlink互联与nvswitch介绍 https://www.chiphell.com/thread-1851449-1-1.html 差不多在一个月前在年度gtc会议上,老黄公开了d ...