BZOJ5020 THUWC2017在美妙的数学王国中畅游(LCT)
明摆着的LCT,问题在于如何维护答案。首先注意到给出的泰勒展开式,并且所给函数求导非常方便,肯定要用上这玩意。容易想到展开好多次达到精度要求后忽略余项。因为x∈[0,1]而精度又与|x-x0|有关,当然是维护x=0.5时的各种东西,粗略算下大概到第13项就可以了。具体要维护的东西当然是对于x的不同次数分别维护一个和。注意编号从0开始。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define lson tree[k].ch[0]
#define rson tree[k].ch[1]
#define lself tree[tree[k].fa].ch[0]
#define rself tree[tree[k].fa].ch[1]
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,fac[];
struct data{int ch[],fa,rev,op;double a,b,ans[],f[];
}tree[N];
double calc(int op,int k,double x,double a,double b)
{
if (op==) return ((k&)<?:-)*pow(a,k)*(k&?cos(a*x+b):sin(a*x+b));
if (op==) return pow(a,k)*exp(a*x+b);
if (op==)
{
if (k==) return a*x+b;
if (k==) return a;
return ;
}
}
void up(int k){for (int i=;i<;i++) tree[k].ans[i]=tree[lson].ans[i]+tree[rson].ans[i]+tree[k].f[i];}
void newpoint(int x)
{
for (int i=;i<;i++) tree[x].f[i]=;
for (int i=;i<;i++)
{
double t=calc(tree[x].op,i,0.5,tree[x].a,tree[x].b);double t2=;
for (int j=i;~j;j--) tree[x].f[j]+=t2*t/fac[j]/fac[i-j],t2/=-;
}
up(x);
}
void rev(int k){if (k) swap(lson,rson),tree[k].rev^=;}
void down(int k){if (tree[k].rev) rev(lson),rev(rson),tree[k].rev=;}
int whichson(int k){return rself==k;}
bool isroot(int k){return lself!=k&&rself!=k;}
void push(int k){if (!isroot(k)) push(tree[k].fa);down(k);}
void move(int k)
{
int fa=tree[k].fa,gf=tree[fa].fa,p=whichson(k);
if (!isroot(fa)) tree[gf].ch[whichson(fa)]=k;tree[k].fa=gf;
tree[fa].ch[p]=tree[k].ch[!p],tree[tree[k].ch[!p]].fa=fa;
tree[k].ch[!p]=fa,tree[fa].fa=k;
up(fa),up(k);
}
void splay(int k)
{
push(k);
while (!isroot(k))
{
int fa=tree[k].fa;
if (!isroot(fa))
if (whichson(k)^whichson(fa)) move(k);
else move(fa);
move(k);
}
}
void access(int k){for (int t=;k;t=k,k=tree[k].fa) splay(k),tree[k].ch[]=t,up(k);}
void makeroot(int k){access(k),splay(k),rev(k);}
int findroot(int k){access(k),splay(k);for (;lson;k=lson) down(k);splay(k);return k;}
void link(int x,int y){makeroot(x),tree[x].fa=y;}
void cut(int x,int y){makeroot(x),access(y),splay(y);tree[x].fa=tree[y].ch[]=,up(y);}
void modify(int x,int op,double a,double b){access(x),splay(x);tree[x].op=op,tree[x].a=a,tree[x].b=b;newpoint(x);}
double query(int u,int v,double x)
{
makeroot(u),access(v),splay(v);
double s=,t=;
for (int i=;i<;i++)
{
s+=t*tree[v].ans[i];
t*=x;
}
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5020.in","r",stdin);
freopen("bzoj5020.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
fac[]=;for (int i=;i<;i++) fac[i]=fac[i-]*i;
n=read(),m=read();read();
for (int i=;i<=n;i++) tree[i].op=read(),scanf("%lf %lf",&tree[i].a,&tree[i].b),newpoint(i);
while (m--)
{
char c=getc();
switch (c)
{
case 'a':{link(read()+,read()+);break;}
case 'd':{cut(read()+,read()+);break;}
case 'm':
{
int x=read()+,op=read();double a,b;scanf("%lf %lf",&a,&b);
modify(x,op,a,b);
break;
}
case 't':
{
int u=read()+,v=read()+;double x;scanf("%lf",&x);
if (findroot(u)!=findroot(v)) printf("unreachable\n");
else printf("%.10f\n",query(u,v,x));
break;
}
}
}
return ;
}
BZOJ5020 THUWC2017在美妙的数学王国中畅游(LCT)的更多相关文章
- [BZOJ5020][THUWC2017]在美妙的数学王国中畅游(LCT)
5020: [THUWC 2017]在美妙的数学王国中畅游 Time Limit: 80 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 323 ...
- Luogu4546 THUWC2017 在美妙的数学王国中畅游 LCT、泰勒展开
传送门 题意:反正就是一堆操作 LCT总是和玄学东西放在一起我们不妨令$x_0=0.5$(其实取什么都是一样的,但是最好取在$[0,1]$的范围内),将其代入给出的式子,我们得到的$f(x)$的式子就 ...
- [THUWC2017]在美妙的数学王国中畅游 LCT+泰勒展开+求导
p.s. 复合函数求导时千万不能先带值,再求导. 一定要先将符合函数按照求导的规则展开,再带值. 设 $f(x)=g(h(x))$,则对 $f(x)$ 求导: $f'(x)=h'(x)g'(h(x)) ...
- 洛谷P4546 [THUWC2017]在美妙的数学王国中畅游 [LCT,泰勒展开]
传送门 毒瘤出题人卡精度-- 思路 看到森林里加边删边,容易想到LCT. 然而LCT上似乎很难实现往一条链里代一个数进去求和,怎么办呢? 善良的出题人在下方给了提示:把奇怪的函数泰勒展开搞成多项式,就 ...
- [THUWC2017]在美妙的数学王国中畅游
[THUWC2017]在美妙的数学王国中畅游 e和sin信息不能直接合并 泰勒展开,大于21次太小,认为是0,保留前21次多项式即可 然后就把e,sin ,kx+b都变成多项式了,pushup合并 上 ...
- 【BZOJ5020】[LOJ2289]【THUWC2017】在美妙的数学王国中畅游 - LCT+泰勒展开
咕咕咕?咕咕咕! 题意: Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙的进程, 这些神秘而又美妙的过程无不可以用数学的语言展现出来. 这印证了一句古老的名言 ...
- BZOJ5020: [THUWC 2017]在美妙的数学王国中畅游(LCT,泰勒展开,二项式定理)
Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙的进程, 这些神秘而又美妙的过程无不可以用数学的语言展现出来. 这印证了一句古老的名言: ...
- 【BZOJ5020】【THUWC2017】在美妙的数学王国中畅游 LCT 泰勒展开
题目大意 给你一棵树,每个点有一个函数\(f(x)\) 正弦函数 \(\sin(ax+b) (a\in[0,1],b\in[0,\pi],a+b\in[0,\pi])\) 指数函数 \(e^{ax+b ...
- [THUWC2017][bzoj5020] 在美妙的数学王国中畅游 [LCT+泰勒展开]
题面 LOJ传送门 思路 这里很重要 它提示我们,把给定的三个函数泰勒展开,并用LCT维护每一项泰勒展开式的值,维护十几项就满足了题目的精度要求 我们考虑一个函数在0位置的泰勒展开 $f(x)=\su ...
随机推荐
- wordpress4.4+版本自动生成一个768w像素缩略图的解决办法
4.4版本以后,wordpress增加了响应式图片的功能,目的是让图片能适应手机.平板等不同屏幕,但是我不想要这个功能,把缩略图大小全调成0,function.php里的相关函数全删除了, 上传图片还 ...
- C#/VB.NET与西门子PLC进行ModbusTcp通信
进入自动化行业半年多了,每天都与机器打交道. 前段时间接手一个任务,需要将我们机台与下站机台进行通讯,我们机台是PC,下站机台为西门子S7-1200. 想想完成这个任务,领导就会对我这个新人刮目相看, ...
- javascript this(上)
javascript的this指向的是一个函数运行时动态绑定对象. this的4种常见的指向: 作为对象的方法调用 var obj={ name:"姚小白", getName:fu ...
- 快速获取APP对应的appPackage和appActivity
appPackage和appActivity 进行appium自动化测试非常重要的两个参数,我们所测试的APP不同,这两个参数肯定也是不一样的. 介绍两种方法可快速获取APP的这两个参数: 方法一 1 ...
- 2018.4.23 linux系统
linux: 1.代表linux的内核 2.代表linux的操作系统:linux的内核和工具软件.应用软件..办公工具.开发工具. 它的特点: 1.它是开源软件,时当今最成功的开源软件之一.所以很多的 ...
- Netty源码分析第3章(客户端接入流程)---->第5节: 监听读事件
Netty源码分析第三章: 客户端接入流程 第五节: 监听读事件 我们回到AbstractUnsafe的register0()方法: private void register0(ChannelPro ...
- ceilometer 源码分析(polling)(O版)
一.简单介绍ceilometer 这里长话短说, ceilometer是用来采集openstack下面各种资源的在某一时刻的资源值,比如云硬盘的大小等.下面是官网现在的架构图 这里除了ceilomet ...
- 从一个简单的寻路问题深入Q-learning
这第一篇随笔实际上在我的科学网博客上是首发,我重新拿到博客园再发一次是希望以此作为我学习Q-learning的一个新的开始.以后这边主技术,科学网博客主理论.我也会将科学网那边技术类的文章转过来的.希 ...
- 使用vbox构建局域网络
update: 也可以启用DHCP自动分配IP地址.(看到过的某一篇博文写过要使用这个服务还得自己搭--就没有动手去实践一下直接手动分配了静态的IP.偶然尝试了一下发现动态IP分配和手动静态IP分配都 ...
- MFC常用操作
目录: 1.文件操作 1.1.获取文件大小 2.路径操作 2.1.创建多级目录 1.文件操作 1.1.获取文件大小 // 获取文件大小 ULONGLONG size = ; // 文件大小 CFile ...