最小割树:新建一个图,包含原图的所有点,初始没有边。任取两点跑最小割,给两点连上权值为最小割的边,之后对于两个割集分别做同样的操作。最后会形成一棵树,树上两点间路径的最小值即为两点最小割。证明一点都不会。

  那么这个题就很好做了,连树都不用建。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 900
#define M 9000
#define inf 1000000000
int n,m,p[N],v[N],u[N],tot=,t=-;
bool flag[N];
int d[N],cur[N],q[N];
struct data{int to,nxt,cap,flow;
}edge[M<<];
map<int,bool> f;
void addedge(int x,int y,int z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,p[x]=t;
}
bool bfs(int S,int T)
{
memset(d,,sizeof(d));d[S]=;
int head=,tail=;q[]=S;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[T];
}
int work(int k,int T,int f)
{
if (k==T) return f;
int used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
int w=work(edge[i].to,T,min(f-used,edge[i].cap-edge[i].flow));
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic(int S,int T)
{
for (int i=;i<=t;i++) edge[i].flow=;
int ans=;
while (bfs(S,T))
{
memcpy(cur,p,sizeof(p));
ans+=work(S,T,inf);
}
if (!f[ans]) f[ans]=,tot++;
}
void dfs(int k)
{
flag[k]=;
for (int i=p[k];~i;i=edge[i].nxt)
if (!flag[edge[i].to]&&edge[i].flow<edge[i].cap)
dfs(edge[i].to);
}
void solve(int l,int r)
{
if (l>=r) return;
dinic(v[l],v[r]);
memset(flag,,sizeof(flag));
dfs(v[l]);
int cnt=l-;
for (int i=l;i<=r;i++)
if (flag[v[i]]) u[++cnt]=v[i];
cnt=r+;
for (int i=l;i<=r;i++)
if (!flag[v[i]]) u[--cnt]=v[i];
for (int i=l;i<=r;i++) v[i]=u[i];
solve(l,cnt-);
solve(cnt,r);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4519.in","r",stdin);
freopen("bzoj4519.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
memset(p,,sizeof(p));
for (int i=;i<=m;i++)
{
int x=read(),y=read(),z=read();
addedge(x,y,z),addedge(y,x,z);
}
for (int i=;i<=n;i++) v[i]=i;
solve(,n);
cout<<tot;
return ;
}

BZOJ4519 CQOI2016不同的最小割(最小割+分治)的更多相关文章

  1. [bzoj4519][Cqoi2016]不同的最小割_网络流_最小割_最小割树

    不同的最小割 bzoj-4519 Cqoi-2016 题目大意:题目链接. 注释:略. 想法: 我们发现这和最小割那题比较像. 我们依然通过那个题说的办法一样,构建最小割树即可. 接下来就是随便怎么处 ...

  2. BZOJ4519: [Cqoi2016]不同的最小割

    Description 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成 两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割.对于带权图来说,将 ...

  3. scu - 3254 - Rain and Fgj(最小点权割)

    题意:N个点.M条边(2 <= N <= 1000 , 0 <= M <= 10^5),每一个点有个权值W(0 <= W <= 10^5),现要去除一些点(不能去掉 ...

  4. 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流

    最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...

  5. 3532: [Sdoi2014]Lis 最小字典序最小割

    3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 865  Solved: 311[Submit][Status] ...

  6. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  7. 紫书 例题 11-2 UVa 1395(最大边减最小边最小的生成树)

    思路:枚举所有可能的情况. 枚举最小边, 然后不断加边, 直到联通后, 这个时候有一个生成树.这个时候,在目前这个最小边的情况可以不往后枚举了, 可以直接更新答案后break. 因为题目求最大边减最小 ...

  8. 【BZOJ4519】[Cqoi2016]不同的最小割 最小割树

    [BZOJ4519][Cqoi2016]不同的最小割 Description 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分 ...

  9. bzoj千题计划140:bzoj4519: [Cqoi2016]不同的最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=4519 最小割树 #include<queue> #include<cstdio&g ...

随机推荐

  1. Object Relational Mapping框架之Hibernate

    hibernate框架简介: hibernate框架就是开发中在持久层中应用居多的ORM框架,它对JDBC做了轻量级的封装. (百度介绍,感觉不错) 什么是ORM:Object Relational ...

  2. 常见面试算法题JS实现-仅用递归函数和栈操作逆序一个栈

    前言: 因为JAVA和JS语言特性的不同,有些东西在JAVA中可能需要一些技巧和手段才能实现的复杂程序,但是在JS中可能就是天然存在的,所以这套书里面的题目不会全部用JS去实现一遍,因为可能JS的实现 ...

  3. 开源项目CIIP(企业信息管理系统框架).2018.1.0910版更新介绍-上周工作总结

    又狂撸了一周的代码.简化了0904版本的多数操作. 上一次更新时,总共需要10步,这次简化成3步.嗯嗯,自我感觉不错. 重要的:在创建项目时,可以选择常用模块啦! 第一步:启动CIIP.Designe ...

  4. 第四节:Windows系统安装时BIOS设置及注意

    BIOS系统 BIOS是英文"Basic Input Output System"的缩略词,直译过来后中文名称就是"基本输入输出系统".在IBM PC兼容系统上 ...

  5. Jmeter接口测试(五)变量及参数化

    在请求过程中,有时我们需要在请求中设置一些变量来测试不同的场景. 提示:在调试请求过程中,无关的请求可以暂时禁用掉,选择某个暂时不用的请求,右键--禁用 Jmeter 支持以下类型变量:所有类型的变量 ...

  6. 维诺图(Voronoi Diagram)分析与实现(转)

    一.问题描述1.Voronoi图的定义又叫泰森多边形或Dirichlet图,它是由一组由连接两邻点直线的垂直平分线组成的连续多边形组成. 2.Voronoi图的特点(1)每个V多边形内有一个生成元: ...

  7. canvas反向裁剪技巧

    我们都知道在canvas 可以通过clip来实现剪裁功能,其步骤一般是先设置要裁剪的区域(路径),然后通过ctx.clip()的实现裁剪,裁剪之后,后续的绘制只能在裁剪的区域显示效果,比如如下一段代码 ...

  8. JVM类加载全过程--图解

    JVM规范允许类加载器在预料某个类将要被使用时就预先加载它,下图为实例方法被调用时的JVM内存模型,1~7完整的描述了从类加载开始到方法执行前的预备过程,后面将对每一个步骤进行解释 在我们加载类的过程 ...

  9. Django 前后端不分离 代码结构详解

    Demo:  hello_pycharm 根目录文件:hello_pycharm [__init__.py  __pycache__  settings.py  urls.py  wsgi.py] A ...

  10. Linux-C语言标准输入输出

    标准 I/O 库(stdio)及其头文件 stdio.h 为底层 I/O 系统调用提供了一个通用的接口.这个库现在已经成为 ANSI 标准 C 的一部分.标准 I/O 库提供了许多复杂的函数用于格式化 ...