git:https://github.com/linyi0604/Computer-Vision

bf暴力匹配:

 # coding:utf-8

 import cv2

 """
orb特征检测和匹配
两幅图片分别是 乐队的logo 和包含该logo的专辑封面
利用orb进行检测后进行匹配两幅图片中的logo """
# 按照灰度图像的方式读入两幅图片
img1 = cv2.imread("../data/logo1.png", cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread("../data/album1.png", cv2.IMREAD_GRAYSCALE) # 创建ORB特征检测器和描述符
orb = cv2.ORB_create()
# 对两幅图像检测特征和描述符
keypoint1, descriptor1 = orb.detectAndCompute(img1, None)
keypoint2, descriptor2 = orb.detectAndCompute(img2, None)
"""
keypoint 是一个包含若干点的列表
descriptor 对应每个点的描述符 是一个列表, 每一项都是检测到的特征的局部图像 检测的结果是关键点
计算的结果是描述符 可以根据监测点的描述符 来比较检测点的相似之处 """
# 获得一个暴力匹配器的对象
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# 利用匹配器 匹配两个描述符的相近成都
maches = bf.match(descriptor1, descriptor2)
# 按照相近程度 进行排序
maches = sorted(maches, key=lambda x: x.distance)
# 画出匹配项
img3 = cv2.drawMatches(img1, keypoint1, img2, keypoint2, maches[: 30], img2, flags=2) cv2.imshow("matches", img3)
cv2.waitKey()
cv2.destroyAllWindows()

knn匹配:

 # coding:utf-8

 import cv2

 # 按照灰度图像读入两张图片
img1 = cv2.imread("../data/logo1.png", cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread("../data/album1.png", cv2.IMREAD_GRAYSCALE) # 获取特征提取器对象
orb = cv2.ORB_create()
# 检测关键点和特征描述
keypoint1, desc1 = orb.detectAndCompute(img1, None)
keypoint2, desc2 = orb.detectAndCompute(img2, None)
"""
keypoint 是关键点的列表
desc 检测到的特征的局部图的列表
"""
# 获得knn检测器
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.knnMatch(desc1, desc2, k=1)
"""
knn 匹配可以返回k个最佳的匹配项
bf返回所有的匹配项
"""
# 画出匹配结果
img3 = cv2.drawMatchesKnn(img1, keypoint1, img2, keypoint2, matches, img2, flags=2)
cv2.imshow("matches", img3)
cv2.waitKey()
cv2.destroyAllWindows()

FLANN匹配:

# coding:utf-8

import cv2

"""
FLANN是类似最近邻的快速匹配库
它会根据数据本身选择最合适的算法来处理数据
比其他搜索算法快10倍
"""
# 按照灰度图片读入
img1 = cv2.imread("../data/logo1.png", cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread("../data/album1.png", cv2.IMREAD_GRAYSCALE)
# 创建sift检测器
sift = cv2.xfeatures2d.SIFT_create()
# 查找监测点和匹配符
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
"""
keypoint是检测到的特征点的列表
descriptor是检测到特征的局部图像的列表
"""
# 获取flann匹配器
FLANN_INDEX_KDTREE = 0
indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
searchParams = dict(checks=50)
flann = cv2.FlannBasedMatcher(indexParams, searchParams)
# 进行匹配
matches = flann.knnMatch(des1, des2, k=2)
# 准备空的掩膜 画好的匹配项
matchesMask = [[0, 0] for i in range(len(matches))] for i, (m, n) in enumerate(matches):
if m.distance < 0.7*n.distance:
matchesMask[i] = [1, 0] drawPrams = dict(matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0),
matchesMask=matchesMask,
flags=0)
# 匹配结果图片
img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, matches, None, **drawPrams) cv2.imshow("matches", img3)
cv2.waitKey()
cv2.destroyAllWindows() 

python opencv3 基于ORB的特征检测和 BF暴力匹配 knn匹配 flann匹配的更多相关文章

  1. 第十六节、基于ORB的特征检测和特征匹配

    之前我们已经介绍了SIFT算法,以及SURF算法,但是由于计算速度较慢的原因.人们提出了使用ORB来替代SIFT和SURF.与前两者相比,ORB有更快的速度.ORB在2011年才首次发布.在前面小节中 ...

  2. [python 译] 基于面向对象的分析和设计

    [python 译] 基于面向对象的分析和设计 // */ // ]]>   [python 译] 基于面向对象的分析和设计 Table of Contents 1 原文地址 2 引言 2.1 ...

  3. python中基于descriptor的一些概念

    python中基于descriptor的一些概念(上) 1. 前言 2. 新式类与经典类 2.1 内置的object对象 2.2 类的方法 2.2.1 静态方法 2.2.2 类方法 2.3 新式类(n ...

  4. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  5. python实现基于CGI的Web应用

    python实现基于CGI的Web应用 本文用一个“网上书店”的web应用示例,简要介绍如何用Python实现基于CGI标准的Web应用,介绍python的cgi模块.cigtb模块对编写CGI脚本提 ...

  6. 基于ORB的LinearBlend融合

    // L14//基于ORB实现线性融合#include "stdafx.h"#include <vector>#include <opencv2/core.hpp ...

  7. python中基于descriptor的一些概念(上)

    @python中基于descriptor的一些概念(上) python中基于descriptor的一些概念(上) 1. 前言 2. 新式类与经典类 2.1 内置的object对象 2.2 类的方法 2 ...

  8. python中基于descriptor的一些概念(下)

    @python中基于descriptor的一些概念(下) 3. Descriptor介绍 3.1 Descriptor代码示例 3.2 定义 3.3 Descriptor Protocol(协议) 3 ...

  9. 用Python实现基于Hadoop Stream的mapreduce任务

    用Python实现基于Hadoop Stream的mapreduce任务 因为Hadoop Stream的存在,使得任何支持读写标准数据流的编程语言实现map和reduce操作成为了可能. 为了方便测 ...

随机推荐

  1. mysql手工注入步骤

    1.一般用 '  "  ) 等符号来闭合,再用%23(即#)来注释后面语句. 2.查找数据库,先用order by n猜字段,再用union select 1,2,3 ...n%23来查询. ...

  2. 【解析】解析XML

    一.dom4j import org.dom4j.Document; import org.dom4j.DocumentException; import org.dom4j.DocumentHelp ...

  3. python入门 20141102-1405

    那Python有哪些缺点呢? 第一个缺点就是运行速度慢,和C程序相比非常慢, 第二个缺点就是代码不能加密. Python是解释型的 不是编译型的 Python解释器-CPython 命令行: 只需要在 ...

  4. SQL 注入,永不过时的黑客技术

    SQL 注入,永不过时的黑客技术 TalkTalk的信息泄漏事件导致约15万人的敏感信息被暴露,涉嫌造成这一事件的其中一名黑客使用的并不是很新的技术.事实上,该技术的「年纪」比这名15岁黑客还要大两岁 ...

  5. ubuntu复制文件或目录

    转自http://www.linuxidc.com/Linux/2008-11/17179.htm cp(copy)命令 该命令的功能是将给出的文件或目录拷贝到另一文件或目录中. 语法: cp [选项 ...

  6. MVC中检测到有潜在危险的 Request.Form 值

    在做mvc项目时,当使用xhedit or.ueditor编辑器时,点击提交时,编辑器中的内容会带有html标签提交给服务器,这时就是会报错,出现如下内容: “/”应用程序中的服务器错误. 从客户端( ...

  7. jenkins 入门教程(上)【转】

    转自:https://www.cnblogs.com/yjmyzz/p/jenkins-tutorial-part-1.html jenkins是一个广泛用于持续构建的可视化web工具,持续构建说得更 ...

  8. Docker技术这些应用场景【转】

    场景一:节省项目环境部署时间 1.单项目打包 每次部署项目到测试.生产等环境,都要部署一大堆依赖的软件.工具,而且部署期间出现问题几率很大,不经意就花费了很长时间. Docker主要理念就是环境打包部 ...

  9. FastDFS集群部署

    之前介绍过关于FastDFS单机部署,详见博文:FastDFS+Nginx(单点部署)事例 下面来玩下FastDFS集群部署,实现高可用(HA) 服务器规划: 跟踪服务器1[主机](Tracker S ...

  10. BigDecimal常用方法

    一.介绍 Java中提供了大数字(超过16位有效位)的操作类,即 java.math.BinInteger 类和 java.math.BigDecimal 类,用于高精度计算. 其中 BigInteg ...