P3480-[POI2009]KAM-Pebbles【阶梯博弈】
正题
题目链接:https://www.luogu.com.cn/problem/P3480
题目大意
\(n\)个石头堆上进行\(\text{Nim}\)游戏,不过需要满足每次操作前后都有\(a_i\leq a_{i+1}(\ i\in[1,n)\ )\)
解题思路
让每一个\(b_i=a_i-a_{i-1}\)就是一个阶梯博弈问题了。
阶梯博弈问题:\(n\)堆石头,第\(i\)堆石头有\(a_i\)个,每次一个玩家可以取走若干个第一堆的石头,或者将第\(i\)堆的任意个石头丢到第\(i-1\)堆里面。
这个问题的\(sg\)函数就是编号为奇数的石头数量的异或和,具体证明的话就是如果只看奇数堆石头,那么转移奇数的堆里的石头就相当与去掉一些石头。所以如果奇数堆必胜的玩家一定会转移奇数堆的,因为如果后手转移偶数堆里的那么先手再把新的转走状态就不会改变。
所以直接做就好了,时间复杂度\(O(Tn)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1100;
int T,n,a[N];
int main()
{
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=n;i>=1;i--)
a[i]=a[i]-a[i-1];
int ans=0;
for(int i=n;i>=1;i-=2)
ans^=a[i];
puts(ans?"TAK":"NIE");
}
return 0;
}
P3480-[POI2009]KAM-Pebbles【阶梯博弈】的更多相关文章
- [BZOJ 1115] [POI2009] 石子游戏Kam 【阶梯博弈】
题目链接:BZOJ - 1115 题目分析 首先看一下阶梯博弈: 阶梯博弈是指:初始有 n 堆石子,每次可以从任意的第 i 堆拿若干石子放到第 i - 1 堆.最终不能操作的人失败. 解法:将奇数位的 ...
- BZOJ 1115 [POI2009]石子游戏Kam(阶梯博弈)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1115 [题目大意] 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数. ...
- 【BZOJ1115】[POI2009]石子游戏Kam 阶梯博弈
[BZOJ1115][POI2009]石子游戏Kam Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要 ...
- [BZOJ1115][POI2009]石子游戏Kam解题报告|阶梯博弈
有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜. 首先 ...
- [bzoj1115][POI2009]石子游戏Kam_博弈论_阶梯博弈
石子游戏 Kam bzoj-1115 POI-2009 题目大意:给定n堆石子,两个人轮流取石子.每堆石子的个数都不少于前一堆石子.每次取后也必须维持这个性质.问谁有必胜策略. 注释:$1\le ca ...
- P3480 [POI2009]KAM-Pebbles
P3480 [POI2009]KAM-Pebbles比如第一个样例 原:0 2 2差: 2 0 0如果把中间的2拿掉一个,就会变成原:0 1 2差: 1 1 0就可以把差看成阶梯nim细节:最终要移到 ...
- HDU 4315 Climbing the Hill (阶梯博弈转尼姆博弈)
Climbing the Hill Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Su ...
- POJ1704 Georgia and Bob (阶梯博弈)
Georgia and Bob Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %I64d & %I64u Subm ...
- HDU 4315:Climbing the Hill(阶梯博弈)
http://acm.hdu.edu.cn/showproblem.php?pid=4315 题意:有n个人要往坐标为0的地方移动,他们分别有一个位置a[i],其中最靠近0的第k个人是king,移动的 ...
随机推荐
- 查询liunx上磁盘占用情况
查询挂载盘磁盘情况 df -h 查询指定目录下的文件夹内存占用情况 du -hs /*
- mysqldump备份总结
常用的备份参数 -A 备份全库 -B 备某一个数据库下的所有表 -R, --routines 备份存储过程和函数数据 --triggers 备份触发器数据 --master-data={1|2} 告诉 ...
- flutter 常用视图组件
1.custom class widget main.dart 1 import 'package:flutter/material.dart'; 2 import './pages/custom.d ...
- .NET WebApi 实战第五讲之EntityFramework事务
在<.NET WebApi 实战第二讲>中我们有提到过事务的概念!任何数据库的读操作可以没有事务,但是写事件必须有事务,如果一个后端工程师在数据库写入时未添加事务,那就不是一个合格的工程师 ...
- C++智能指针的原理和实现
一.智能指针起因 在C++中,动态内存的管理是由程序员自己申请和释放的,用一对运算符完成:new和delete. new:在动态内存中为对象分配一块空间并返回一个指向该对象的指针: delete:指向 ...
- 【java虚拟机】内存分配与回收策略
作者:平凡希 原文地址:https://www.cnblogs.com/xiaoxi/p/6557473.html 前言 对象的内存分配,往大的方向上讲,就是在堆上分配,少数情况下也可能会直接分配在老 ...
- 解决maven中静态资源只能放到properties中的问题
构建Maven项目的时候,如果没有进行特殊的配置,Maven会按照标准的目录结构查找和处理各种类型文件. Maven项目的标准目录结构 src main java 源文件 resour ...
- spring支持的Bean的作用域
Sigleton:单例模式,在整个Spring IoC容器中,使用Sigleton定义Bean将有一个实例 prototype:原型模式,每次通过容器的getBean方法获取propertype都将产 ...
- 学习小记: Kaggle Learn - Machine Learning Explainability
Method Feature(s) Sample(s) Result Value/Feature Permutation Importance 1 all validation samples Sin ...
- 华为分析X HUAWEI Ads,上线深度转化事件回传功能,让ROI 看得见!
华为分析X HUAWEI Ads,上线深度转化事件回传功能,让ROI 看得见! 随着移动应用生态的流量成本攀升.行业竞争加剧,越来越多的广告商希望通过精准投放来获取更高质量的深度转化用户,比如二手车. ...