Improving Adversarial Robustness Using Proxy Distributions
概
本文利用GAN生成数据, 并利用这些数据进行对抗训练, 无论是自然精度还是鲁棒性都获得了极大的提升.
在相同的网络结构且不使用额外的真实数据的前提下, 该方法在RobustBench上取得最好的成绩.
主要内容
proxy distribution
本文首先给出了一个理论分析, 即在proxy distribution上取得的鲁棒性和与真实分布之间的差距有多大.
首先给出average robustness的定义:
\]
其中\(h\)是分类器, \(D\)是数据的分布, \(d\)是一个距离, 比如常见的\(\ell_{\infty}\). 该指标衡量的就是分类器\(h\)在数据分布\(D\)上的平均鲁棒性.
因为, 我们实际上可获得的是有限的数据集\(S\), \(S\)从\(D\)中采样得到, 故我们更关心的实际上:
\]
其中\(L\)是某种训练算法, 比如常见的对抗训练.
由于:
\]
其中\(\tilde{D}\)是另一个分布(这篇文章里就是proxy distribution, 用GAN拟合的分布), \(\hat{S}\)则是从\(\tilde{D}\)中采样的数据集.
\(\mathop{\mathbb{E}} \limits_{S \sim \tilde{D}^n, \: h \leftarrow L(S)} [\mathrm{Rob}_d (h, D)]\)
进一步, 有如下的分解(注意\(S \sim \tilde{D}^n\)表示\(S\)是从拟合的分布中采样的, 并且有\(n\)个样本.):
即, 分成了三部分:
- Empirical robustness: 即在训练集上的鲁棒性;
- Generalization penalty: 即训练集上的鲁棒性和在整个拟合的数据分布上的鲁棒性的差距;
- Distribution-shift penalty: 即与真实分布上鲁棒性的差距.
前两项已经有别的工作研究了, 本文研究的是, 在拟合分布上的鲁棒性和真实分布上的乱不能更新的差距到底有多少(注意都是在拟合数据集上训练的\(h\)).
首先作者用wasserstein 散度定义两个分布的距离:
接着给出定理1:
定理1的意义在于, 其说明只要我们拟合的分布足够好, 那么鲁棒性的差距就能足够小, 这结果与分类器\(h\)无关!
作者还给出了一些推论, 和定理3说明上面的界是紧的, 但我感觉意义不大, 这里就不多赘述了.
如何利用构造的数据
训练的目标是很简洁的:
\]
前一项就是在真实数据上进行对抗训练, 后者就是在构造的数据上进行对抗训练.
伪造的数据集是这样构建的:
- 用DDPM模型拟合CIFAR-10的训练集的分布;
- 利用DDPM生成无标签数据\(\{x\}\);
- 利用LaNet和SplitNet对数据预测标签\(\{y_1\}\), \(\{y_2\}\);
- 去掉\(y_1 \not = y_2\)的数据, 去掉二者confidence均小于90%的数据.
作者总共生成了6M的数据, 在训练的时候, 每个batch, 真实的和虚假的数据的比例是1:1.
作者在验证鲁棒性上进行了实验, 这里不多赘述.
Improving Adversarial Robustness Using Proxy Distributions的更多相关文章
- Improving Adversarial Robustness via Channel-Wise Activation Suppressing
目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via ...
- IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES
目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting M ...
- Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
目录 概 主要内容 Auto-PGD Momentum Step Size 损失函数 AutoAttack Croce F. & Hein M. Reliable evaluation of ...
- Second Order Optimization for Adversarial Robustness and Interpretability
目录 概 主要内容 (4)式的求解 超参数 Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustn ...
- Certified Adversarial Robustness via Randomized Smoothing
目录 概 主要内容 定理1 代码 Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized S ...
- Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...
- Adversarial Detection methods
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...
- (转) Summary of NIPS 2016
转自:http://blog.evjang.com/2017/01/nips2016.html Eric Jang Technology, A.I., Careers ...
- 2016CVPR论文集
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...
随机推荐
- 【Go语言学习笔记】包
包其实是每个大型工程都会使用的模块化工具. 将相关的代码封装成一个包,给其他项目调用,提供不同的功能. GO的设计是将一个文件夹看成一个包,虽然不一定非要用文件夹的名字,但是比较建议. 同一个文件夹下 ...
- Spring Boot对日志的控制
一.logback日志技术介绍 Spring Boot中使用的日志技术为logback.其与Log4J都出自同一人,性能要优于Log4J,是Log4J的替代者. 在Spring Boot中若要使用lo ...
- linux系统的一些常用命令
cd 进入某个目录 ifconfig 查看本机的ip cp (要复制的文件的位置) (要把文件复制的位置) ll 查看文件下,文件的操作权限 ls查看该文件夹下的有那些文件和文件夹 vi filena ...
- JS - 获取当前的时间,并且转换成年 - 月 - 日格式!
先获取当前时间,并转换成年月日格式! function getNowFormatDate() { var date = new Date(); var seperator1 = "-&quo ...
- HashMap、ConcurrentHashMap对比
1.hashmap的put的原理,hashmap的扩容及计算槽的算法,线程安全的hashtable.ConcurrentHashMap的区别是什么 1.1 hashMap的put原理 什么时候变成红黑 ...
- 35、搜索插入位置 | 算法(leetode,附思维导图 + 全部解法)300题
零 标题:算法(leetode,附思维导图 + 全部解法)300题之(35)搜索插入位置 一 题目描述 二 解法总览(思维导图) 三 全部解法 1 方案1 1)代码: // 方案1 "无视要 ...
- Mysql资料 查询SQL执行顺序
目录 一.Mysql数据库查询Sql的执行顺序是什么? 二.具体顺序 一.Mysql数据库查询Sql的执行顺序是什么? (9)SELECT (10) DISTINCT column, (6)AGG_F ...
- Tableau如何绘制多边形地图
一.把省\自治区拖拽至标记生成地图二.把销售额拖拽至标记 三.地图-地图层-冲蚀100% 四.最终结果如图所示
- mobile app 与server通信的四种方式
Have you ever wondered how the information gets into the application installed in your mobile device ...
- cmcc_simplerop
这是一道系统调用+rop的题. 先来就检查一下保护. 32位程序,只开启了堆栈不可执行.ida看一下伪代码. 代码也很简洁,就是直接让你溢出.这里ida反汇编显示的v4具体ebp的距离是0x14,再加 ...