The Limitations of Deep Learning in Adversarial Settings
概
利用Jacobian矩阵构造adversarial samples,计算量比较大.
主要内容
目标:
\mathop{\arg \min} \limits_{\delta_X} \|\delta_X\|, \mathbf{s.t.} \: F(X+\delta_X)=Y^*.
\]
简而言之, 在原图像\(X\)上加一个扰动\(\delta_X\), 使得\(F\)关于\(X+\delta_X\)的预测为\(Y^*\)而非\(Y\).
若\(Y \in \mathbb{R}^M\)是一个\(M\)维的向量, 类别由下式确定
\]
\(F(X)=Y\)关于\(X\)的Jacobian矩阵为
\]
注意, 这里作者把\(X\)看成一个\(N\)维向量(只是为了便于理解).
因为我们的目的是添加扰动\(\delta_X\), 使得\(X+\delta_X\)的标签为我们指定的\(t\), 即我们希望
\]
作者希望改动部分元素, 即\(\|\delta_X\|_0\le \Upsilon\), 作者是构造了一个saliency_map来选择合适的\(i\), 并在其上进行改动, 具体算法如下:

saliency_map的构造之一是:
\begin{array}{ll}
0, & if \: \frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0, \\
\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|, & otherwise.
\end{array}
\]
可以很直观的去理解, 改变标签, 自然希望\(F_t(X)\)增大, 其余部分减少, 故 \(\frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0\)所对应的\(X_i\)自然是不重要的, 其余的是重要的, 其重要性用\(\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|\)来表示.
alg2, alg3
作者顺便提出了一个更加具体的算法, 应用于Mnist, max_iter 中的\(784\)即为图片的大小\(28 \times 28\), \(\Upsilon=50\), 相当于图片中\(50\%\)的像素发生了改变, 且这里采用了一种新的saliency_map, 其实质为寻找俩个指标\(p,q\)使得:

其实际的操作流程根据算法3. \(\theta\)是每次改变元素的量.


一些有趣的实验指标
Hardness measure


其中\(\epsilon(s,t,\tau)\)中, \(s\):图片标签, \(t\):目标标签, \(\tau\):成功率, \(\epsilon\)为改变像素点的比例. (12)是(11)的一个梯形估计, \(\tau_k\)由选取不同的\(\Upsilon_k\)来确定, \(H(s, t)\)越大说明将类别s改变为t的难度越大.
Adversarial distance

\(A(X,t)\)越大, 说明将图片\(X\)的标签变换至\(t\)的难度越大, 而一个模型的稳定性可以用下式衡量
R(F)=\min_{X,t} A(X,t).
\]
The Limitations of Deep Learning in Adversarial Settings的更多相关文章
- What are some good books/papers for learning deep learning?
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, ...
- Applied Deep Learning Resources
Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...
- (转)Deep Learning Research Review Week 1: Generative Adversarial Nets
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...
- 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS ICLR 2 ...
- Towards Deep Learning Models Resistant to Adversarial Attacks
目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...
- (转) The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...
- 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...
- [C3] Andrew Ng - Neural Networks and Deep Learning
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...
- 0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...
随机推荐
- 学习java 6.29
今天是学习Java的第一天. 学习内容:了解了JDK的下载和安装: 学会了如何配置Path环境变量及安装eclipse: 执行了HelloWorld案例: 在Java中关键字需要小写,Java中最基本 ...
- words in English that contradict themselves
[S1E10, TBBT]Leonard: I don't get it. I already told her a lie. Why would I replace it with a differ ...
- Elaticsearch(一)--基础原理及用法
一.基础概念 1.Elasticsearch简介 Lucene是Java语言编写的全文(全部的文本内容进行分析,建立索引,使之可以被搜索)检索引擎工具包(全文检索引擎的架构),用于处理纯文本的数据,提 ...
- Hbase与Phoenix整合
目录 一.简介 二.安装 三.Phoenix Shell操作 SCHEMA操作 1.创建schema 2.使用schema 3.删除schema 表操作 1.显示所有表 2.创建表 3.表数据的增删改 ...
- centos 7 重新获取IP地址
1.安装软件包 dhclient # yum install dhclient 2.释放现有IP # dhclient -r 3.重新获取 # dhclient 4.查看获取到到IP # ip a
- ORACLE lag,lead
oracle中想取对应列前几行或者后几行的数据时可以使用lag和lead分析函数 lag:是滞后的意思,表示本行数据是要查询的数据后面,即查询之前行的记录. lead:是领队的意思,表示本行数据是要查 ...
- NSString类里有个hash
实际编程总会涉及到比较两个字符串的内容,一般会用 [string1 isEqualsToString:string2] 来比较两个字符串是否一致.对于字符串的isEqualsToString方法,需要 ...
- SVN终端演练-版本回退
1. 版本回退概念以及原因? 概念: 是指将代码(本地代码或者服务器代码), 回退到之前记录的某一特定版本 原因: 如果代码做错了, 想返回之前某个状态重做;2. 修改了,但未提交的情况下 ...
- 【Linux】【Services】【Docker】基础理论
1. 名称空间:NameSpace 内核级别,环境隔离: 1.1. 名称空间的历史 PID NameSpace:Linux 2.6.24 ,PID隔离 Network NameSpace:Linux ...
- Springboot(1) helloworld 搭建环境
一 .springboot 运行环境: 1. jdk1.8:Spring Boot 推荐jdk1.7及以上:java version "1.8.0_112" 2.–maven3.x ...