Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, Ananthram Swami, The Limitations of Deep Learning in Adversarial Settings.

利用Jacobian矩阵构造adversarial samples,计算量比较大.

主要内容

目标:

\[\tag{1}
\mathop{\arg \min} \limits_{\delta_X} \|\delta_X\|, \mathbf{s.t.} \: F(X+\delta_X)=Y^*.
\]

简而言之, 在原图像\(X\)上加一个扰动\(\delta_X\), 使得\(F\)关于\(X+\delta_X\)的预测为\(Y^*\)而非\(Y\).

若\(Y \in \mathbb{R}^M\)是一个\(M\)维的向量, 类别由下式确定

\[label(X)=\mathop{\arg \min} \limits_{j} F_j(X).
\]

\(F(X)=Y\)关于\(X\)的Jacobian矩阵为

\[[\frac{\partial F_j(X)}{\partial X_i}]_{i=1,\ldots,N,j=1,\ldots,M},
\]

注意, 这里作者把\(X\)看成一个\(N\)维向量(只是为了便于理解).

因为我们的目的是添加扰动\(\delta_X\), 使得\(X+\delta_X\)的标签为我们指定的\(t\), 即我们希望

\[t=\mathop{\arg \min} \limits_{j} F_j(X+\delta_X).
\]

作者希望改动部分元素, 即\(\|\delta_X\|_0\le \Upsilon\), 作者是构造了一个saliency_map来选择合适的\(i\), 并在其上进行改动, 具体算法如下:

saliency_map的构造之一是:

\[S(X,t)[i] = \{
\begin{array}{ll}
0, & if \: \frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0, \\
\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|, & otherwise.
\end{array}
\]

可以很直观的去理解, 改变标签, 自然希望\(F_t(X)\)增大, 其余部分减少, 故 \(\frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0\)所对应的\(X_i\)自然是不重要的, 其余的是重要的, 其重要性用\(\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|\)来表示.

alg2, alg3

作者顺便提出了一个更加具体的算法, 应用于Mnist, max_iter 中的\(784\)即为图片的大小\(28 \times 28\), \(\Upsilon=50\), 相当于图片中\(50\%\)的像素发生了改变, 且这里采用了一种新的saliency_map, 其实质为寻找俩个指标\(p,q\)使得:



其实际的操作流程根据算法3. \(\theta\)是每次改变元素的量.

一些有趣的实验指标

Hardness measure





其中\(\epsilon(s,t,\tau)\)中, \(s\):图片标签, \(t\):目标标签, \(\tau\):成功率, \(\epsilon\)为改变像素点的比例. (12)是(11)的一个梯形估计, \(\tau_k\)由选取不同的\(\Upsilon_k\)来确定, \(H(s, t)\)越大说明将类别s改变为t的难度越大.

Adversarial distance



\(A(X,t)\)越大, 说明将图片\(X\)的标签变换至\(t\)的难度越大, 而一个模型的稳定性可以用下式衡量

\[\tag{14}
R(F)=\min_{X,t} A(X,t).
\]

The Limitations of Deep Learning in Adversarial Settings的更多相关文章

  1. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  2. Applied Deep Learning Resources

    Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...

  3. (转)Deep Learning Research Review Week 1: Generative Adversarial Nets

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...

  4. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

  5. Towards Deep Learning Models Resistant to Adversarial Attacks

    目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...

  6. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

  7. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  8. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

随机推荐

  1. 学习java 6.29

    今天是学习Java的第一天. 学习内容:了解了JDK的下载和安装: 学会了如何配置Path环境变量及安装eclipse: 执行了HelloWorld案例: 在Java中关键字需要小写,Java中最基本 ...

  2. words in English that contradict themselves

    [S1E10, TBBT]Leonard: I don't get it. I already told her a lie. Why would I replace it with a differ ...

  3. Elaticsearch(一)--基础原理及用法

    一.基础概念 1.Elasticsearch简介 Lucene是Java语言编写的全文(全部的文本内容进行分析,建立索引,使之可以被搜索)检索引擎工具包(全文检索引擎的架构),用于处理纯文本的数据,提 ...

  4. Hbase与Phoenix整合

    目录 一.简介 二.安装 三.Phoenix Shell操作 SCHEMA操作 1.创建schema 2.使用schema 3.删除schema 表操作 1.显示所有表 2.创建表 3.表数据的增删改 ...

  5. centos 7 重新获取IP地址

    1.安装软件包 dhclient # yum install dhclient 2.释放现有IP # dhclient -r 3.重新获取 # dhclient 4.查看获取到到IP # ip a

  6. ORACLE lag,lead

    oracle中想取对应列前几行或者后几行的数据时可以使用lag和lead分析函数 lag:是滞后的意思,表示本行数据是要查询的数据后面,即查询之前行的记录. lead:是领队的意思,表示本行数据是要查 ...

  7. NSString类里有个hash

    实际编程总会涉及到比较两个字符串的内容,一般会用 [string1 isEqualsToString:string2] 来比较两个字符串是否一致.对于字符串的isEqualsToString方法,需要 ...

  8. SVN终端演练-版本回退

    1. 版本回退概念以及原因?    概念: 是指将代码(本地代码或者服务器代码), 回退到之前记录的某一特定版本    原因: 如果代码做错了, 想返回之前某个状态重做;2. 修改了,但未提交的情况下 ...

  9. 【Linux】【Services】【Docker】基础理论

    1. 名称空间:NameSpace 内核级别,环境隔离: 1.1. 名称空间的历史 PID NameSpace:Linux 2.6.24 ,PID隔离 Network NameSpace:Linux ...

  10. Springboot(1) helloworld 搭建环境

    一 .springboot 运行环境: 1. jdk1.8:Spring Boot 推荐jdk1.7及以上:java version "1.8.0_112" 2.–maven3.x ...