Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, Ananthram Swami, The Limitations of Deep Learning in Adversarial Settings.

利用Jacobian矩阵构造adversarial samples,计算量比较大.

主要内容

目标:

\[\tag{1}
\mathop{\arg \min} \limits_{\delta_X} \|\delta_X\|, \mathbf{s.t.} \: F(X+\delta_X)=Y^*.
\]

简而言之, 在原图像\(X\)上加一个扰动\(\delta_X\), 使得\(F\)关于\(X+\delta_X\)的预测为\(Y^*\)而非\(Y\).

若\(Y \in \mathbb{R}^M\)是一个\(M\)维的向量, 类别由下式确定

\[label(X)=\mathop{\arg \min} \limits_{j} F_j(X).
\]

\(F(X)=Y\)关于\(X\)的Jacobian矩阵为

\[[\frac{\partial F_j(X)}{\partial X_i}]_{i=1,\ldots,N,j=1,\ldots,M},
\]

注意, 这里作者把\(X\)看成一个\(N\)维向量(只是为了便于理解).

因为我们的目的是添加扰动\(\delta_X\), 使得\(X+\delta_X\)的标签为我们指定的\(t\), 即我们希望

\[t=\mathop{\arg \min} \limits_{j} F_j(X+\delta_X).
\]

作者希望改动部分元素, 即\(\|\delta_X\|_0\le \Upsilon\), 作者是构造了一个saliency_map来选择合适的\(i\), 并在其上进行改动, 具体算法如下:

saliency_map的构造之一是:

\[S(X,t)[i] = \{
\begin{array}{ll}
0, & if \: \frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0, \\
\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|, & otherwise.
\end{array}
\]

可以很直观的去理解, 改变标签, 自然希望\(F_t(X)\)增大, 其余部分减少, 故 \(\frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0\)所对应的\(X_i\)自然是不重要的, 其余的是重要的, 其重要性用\(\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|\)来表示.

alg2, alg3

作者顺便提出了一个更加具体的算法, 应用于Mnist, max_iter 中的\(784\)即为图片的大小\(28 \times 28\), \(\Upsilon=50\), 相当于图片中\(50\%\)的像素发生了改变, 且这里采用了一种新的saliency_map, 其实质为寻找俩个指标\(p,q\)使得:



其实际的操作流程根据算法3. \(\theta\)是每次改变元素的量.

一些有趣的实验指标

Hardness measure





其中\(\epsilon(s,t,\tau)\)中, \(s\):图片标签, \(t\):目标标签, \(\tau\):成功率, \(\epsilon\)为改变像素点的比例. (12)是(11)的一个梯形估计, \(\tau_k\)由选取不同的\(\Upsilon_k\)来确定, \(H(s, t)\)越大说明将类别s改变为t的难度越大.

Adversarial distance



\(A(X,t)\)越大, 说明将图片\(X\)的标签变换至\(t\)的难度越大, 而一个模型的稳定性可以用下式衡量

\[\tag{14}
R(F)=\min_{X,t} A(X,t).
\]

The Limitations of Deep Learning in Adversarial Settings的更多相关文章

  1. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  2. Applied Deep Learning Resources

    Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...

  3. (转)Deep Learning Research Review Week 1: Generative Adversarial Nets

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...

  4. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

  5. Towards Deep Learning Models Resistant to Adversarial Attacks

    目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...

  6. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

  7. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  8. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

随机推荐

  1. day13 装饰器与语法糖

    day13 装饰器与语法糖 一.装饰器 1.什么是装饰器 装饰器就是装饰别人的工具,具体是指为被装饰者添加新功能 装饰器->函数 被装饰者->函数 2.为何要用装饰器 装饰器的核心思想:( ...

  2. day10 负载均衡

    day10 负载均衡 负载均衡反向代理 正向代理:即是客户端代理, 代理客户端, 服务端不知道实际发起请求的客户端. # (内部上网) 客户端 <-> 代理 -> 服务端 反向代理即 ...

  3. Hive(六)【分区表、分桶表】

    目录 一.分区表 1.本质 2.创建分区表 3.加载数据到分区表 4.查看分区 5.增加分区 6.删除分区 7.二级分区 8.分区表和元数据对应得三种方式 9.动态分区 二.分桶表 1.创建分桶表 2 ...

  4. nodejs-Path模块

    JavaScript 标准参考教程(alpha) 草稿二:Node.js Path模块 GitHub TOP Path模块 来自<JavaScript 标准参考教程(alpha)>,by ...

  5. Lock锁的使用

    在Java多线程中,可以使用synchronized关键字实现线程之间的同步互斥,在jdk1.5后新增的ReentrantLock类同样可达到此效果,且在使用上比synchronized更加灵活. 观 ...

  6. final&static

    final 1.final修饰类,那么该类不能有子类,那么也就没有子类重写父类的方法,也就没有多态 2.final修饰成员变量,那么成员变量要么显式赋值(用第一种),要么在构造方法中赋值 无论哪一种, ...

  7. 深入理解java动态代理机制

    动态代理其实就是java.lang.reflect.Proxy类动态的根据您指定的所有接口生成一个class byte,该class会继承Proxy类,并实现所有你指定的接口(您在参数中传入的接口数组 ...

  8. 出现 CannotAcquireLockException 异常

    项目出现  CannotAcquireLockException异常 原因: 百度了一下,是由于 Spring 事务嵌套造成死锁 结合自己的, handleWithdraw 方法底层有调用 其他 se ...

  9. 【C/C++】习题3-5 谜题/算法竞赛入门经典/数组和字符串

    [题目] 有一个5*5的网络,恰好有一个格子是空的(空格),其他格子各有一个字母. 指令:A, B, L, R 把空格上.下.左.右的相邻字母移到空格中. [输入] 初始网格和指令序列(以数字0结束) ...

  10. C# 使用modbus 读取PLC 寄存器地址

    使用的组件Nmodbus 定义参数,全局变量: //创建modbus实体对象 private static ModbusFactory modbusFactory; private static IM ...