Croce F. & Hein M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In International Conference on Machine Learning (ICML), 2020.

作者改进了PGD攻击方法, 并糅合了不同种类的攻击方法于一体, 使得AA的估计更为有效可靠. 特别是不需要调参.

主要内容

Auto-PGD

Auto-PGD, 其最大的改进的地方就是不需要调节参数(其实作者自己调得比较好啦). 普通的PGD:

\[x^{(k+1)} = P_S (x^{(k)} + \eta^{(k)}\nabla f(x^{(k)})),
\]

其中\(P\)是投影算子, \(\eta\) 是学习率, \(f\)是损失函数.

Momentum

\[z^{(k+1)} = P_S (x^{(k)}+\eta^{(k)}\nabla f(x^{(k)})) \\
x^{(k+1)} = P_S(x^{(k)}+\alpha \cdot (z^{(k+1)}-x^{(k)})+(1-\alpha) \cdot (x^{(k)}-x^{(k-1)})).
\]

注: 作者选择 \(\alpha=0.75\)

Step Size

首先确定总的迭代次数\(N_{iter}\), 然后确定一些检查的结点\(w_0=0, w_1, \cdots, w_n\), 在每一个检查结点检查如下条件

  1. \(\sum_{i={w_{i-1}}}^{w_{i}-1} 1_{f(x^{(i+1)}> f(x^{(i)}))}< \rho \cdot (w_j - w_{j-1})\);

  2. \(\eta^{w_{j-1}}\equiv \eta^{w_j}\) and \(f_{max}^{(w_{j-1})}\equiv f_{max}^{(w_j)}.\)

其中\(f_{max}^{(k)}\)是前\(k\)个结点前的最高的函数值, 若其中条件之一满足, 则对之后的迭代的学习率减半, 即

\[\eta^{(k)}:= \eta^{(w_j)} /2, \forall k=w_j+1, \ldots w_{j+1}.
\]

注: 学习率\(\eta^{(0)}=2\epsilon\).

  1. 条件1是为了检查这一阶段的迭代是否有效(即损失是否升高的次数), 这里作者选择\(\rho=0.75\);
  2. 条件二如果成立了, 说明这一阶段相较于之前的阶段并没有提升, 所以需要减半学习率.

注: 一旦学习率减半了, 作者会令\(x^{(w_j+1)}:=x_{max}\), 从最好的结果处restart.

剩下一个问题是, 如何选择\(w_i\), 作者采取如下方案

\[w_j = [p_jN_{iter}] \le N_{iter} \\
p_{j+1} = p_j + \max \{p_j - p_{j-1} - 0.03, 0.06\}, p_0=0, p_1=0.22.
\]

损失函数

一般来说, 大家用的是交叉熵, 即

\[\mathrm{CE}(x, y) = -\log p_y = -z_y + \log (\sum_{j=1}^K e_{z_j}),
\]

其梯度为

\[\nabla_x \mathrm{CE}(x, y) = (-1 + p_y) \nabla_x z_y + \nabla_{i\not=y} p_i \nabla_xz_i,
\]

若\(p_y\)比较接近于\(1\), 也就是说分类的置信度比较高, 则会导致梯度消失, 而置信度可以单纯通过\(h=\alpha g\)来提高, 即这个损失对scale是敏感的. 替代的损失使用DLR损失

\[\mathrm{DLR} (x, y) = -\frac{z_y -\max_{i \not=y}z_i}{z_{\pi_1}-z_{\pi_3}},
\]

其中\(\pi_i\)是按照从大到小的一个序. 这个损失就能避免scale的影响, 同时还有一个target版本

\[\mathrm{Targeted-DLR}(x, y) = - \frac{z_y-z_t}{z_{\pi_1}- (z_{\pi_3}+z_{\pi_4})/2}.
\]

AutoAttack

AutoAttack糅合了不同的攻击方法:

  • \(\mathrm{APGD_{CE}}\)
  • \(\mathrm{APGD_{DLR}}\)
  • \(\mathrm{FAB}\)
  • \(\mathrm{Square \: Attack}\): black-box

Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks的更多相关文章

  1. Improving Adversarial Robustness via Channel-Wise Activation Suppressing

    目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via ...

  2. Improving Adversarial Robustness Using Proxy Distributions

    目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chia ...

  3. Second Order Optimization for Adversarial Robustness and Interpretability

    目录 概 主要内容 (4)式的求解 超参数 Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustn ...

  4. Certified Adversarial Robustness via Randomized Smoothing

    目录 概 主要内容 定理1 代码 Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized S ...

  5. IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES

    目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting M ...

  6. Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...

  7. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  8. 壁虎书7 Ensemble Learning and Random Forests

    if you aggregate the predictions of a group of predictors,you will often get better predictions than ...

  9. 生成对抗网络资源 Adversarial Nets Papers

    来源:https://github.com/zhangqianhui/AdversarialNetsPapers AdversarialNetsPapers The classical Papers ...

随机推荐

  1. canal从mysql拉取数据,并以protobuf的格式往kafka中写数据

    大致思路: canal去mysql拉取数据,放在canal所在的节点上,并且自身对外提供一个tcp服务,我们只要写一个连接该服务的客户端,去拉取数据并且指定往kafka写数据的格式就能达到以proto ...

  2. flink-----实时项目---day07-----1.Flink的checkpoint原理分析 2. 自定义两阶段提交sink(MySQL) 3 将数据写入Hbase(使用幂等性结合at least Once实现精确一次性语义) 4 ProtoBuf

    1.Flink中exactly once实现原理分析 生产者从kafka拉取数据以及消费者往kafka写数据都需要保证exactly once.目前flink中支持exactly once的sourc ...

  3. Attempt to invoke virtual method 'boolean java.lang.String.equals(java.lang.Object)' on a null objec

    遇到这个一场折腾了1个小时, 这是系统在解析XML的时候出错, 最后费了好大的劲才发现 XML文件中,<View>  写成小写的 <view> 了. 崩溃啊.......... ...

  4. Android Bitmap 全面解析(一)加载大尺寸图片

    压缩原因:1.imageview大小如果是200*300那么加载个2000*3000的图片到内存中显然是浪费可耻滴行为;2.最重要的是图片过大时直接加载原图会造成OOM异常(out of memory ...

  5. mysql 报 'Host ‘XXXXXX’ is blocked because of many connection errors'

    1. 问题:服务启动时,日志报错,导致启动失败: Caused by: com.mysql.cj.exceptions.CJException: null,  message from server: ...

  6. 【Java 基础】Java日期格式问题

    1. Use SimpleDateFormat to format Date. Watch out, SDF is NOT THREAD-SAFE, it might not be important ...

  7. Appium获取toast消息(二)

    刚接触appium进行移动端设备的UI自动化,在遇到toast消息的时候很是苦恼了一阵,最后通过强大的搜索引擎找到了个相对解决方法,废话不多说,直接贴代码↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ ...

  8. live2d

    原文来自https://www.fghrsh.net/post/123.html Live2D 看板娘 v1.4 / Demo 3 - 内置 waifu-tips.json (博客园等网站引用推荐) ...

  9. WPF之交互触发器(CallMethodAction)学习

    需求背景: 当我们需要制作画板时,我们的VM需要记录我们的坐标并保存到Path的Data中,用我们普通的Command是无法办到的,这时我们就衍生出来了一个交互触发器CallMethodAction ...

  10. Django记录操作日志、LogEntry的使用

    LogEntry是在后台开发中经常用到的模块,它在admin是默认开启的. 可以使用LogEntry模块记录所有用户的操作记录.一方面可以用来监督,另一方面可以用来做回滚. 1. 使用LogEntry ...