Description

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

Input

输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,'0'表示红色,'1'表示蓝色。

Output

输出文件paint.out包含一个整数,最多能正确粉刷的格子数。

Sample Input

3 6 3
111111
000000
001100

Sample Output

16

HINT

30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。 100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。

Source

http://www.lydsy.com/JudgeOnline/problem.php?id=1296

线性dp

 #include <stdio.h>
#define MAXN 3000
int f[MAXN][MAXN],sum[MAXN];
int dp[MAXN][MAXN];
char in[MAXN];
int max(int a,int b)
{
if(a>b) return a;
return b;
}
int min(int a,int b)
{
if(a<b) return a;
return b;
}
int main()
{
int k,i,j,n,m,t,l,ans=-;
scanf("%d%d%d",&n,&m,&t);
for(k=;k<=n;k++)
{
scanf("%s",in+);
for(i=;i<=m;i++)
sum[i]=sum[i-]+(in[i]=='');
for(i=;i<=m;i++)
for(j=;j<=m;j++)
{
f[j][i]=;
for(l=;l<j;l++)
{
int cnt=sum[j]-sum[l];
f[j][i]=max(f[j][i],f[l][i-]+max(cnt,j-l-cnt));
}
}
for(i=;i<=t;i++)
{
int cnt=min(m,i);
for(j=;j<=cnt;j++)
dp[k][i]=max(dp[k][i],dp[k-][i-j]+f[m][j]);
}
}
for(i=;i<=t;i++)
ans=max(ans,dp[n][i]);
printf("%d\n",ans);
return ;
}

bzoj 1296: [SCOI2009]粉刷匠的更多相关文章

  1. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  2. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  3. bzoj 1296: [SCOI2009]粉刷匠【dp+背包dp】

    参考:http://hzwer.com/3099.html 神题神题 其实只要知道思路就有点都不难-- 先对每一行dp,设g[i][j]为这行前i个格子粉刷了k次最大粉刷正确数,随便n^3一下就行 设 ...

  4. bzoj 1296: [SCOI2009]粉刷匠 动态规划

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  5. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

  6. 1296: [SCOI2009]粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  7. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  8. bzoj1296: [SCOI2009]粉刷匠(DP)

    1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...

  9. 【BZOJ1296】[SCOI2009]粉刷匠(动态规划)

    [BZOJ1296][SCOI2009]粉刷匠(动态规划) 题面 BZOJ 洛谷 题解 一眼题吧. 对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可. # ...

随机推荐

  1. UML(Unified Modeling Language)统一建模语言

    什么是模型 模型是对现实的简化 模型是提供系统的蓝图,模型可是包括详细计划.也可是是从更高程度考虑系统的总体计划,每个系统可以从不同的方面用不通过的模型来描述.因而每个模型都是在语义上闭合的抽象系统. ...

  2. JMeter专题系列(六)集合点

    JMeter也有像LR中的集合点: JMeter里面的集合点是通过添加定时器来完成. 注意:集合点的位置一定要在Sample之前. 集合点:虽然我们的“性能测试”理解为“多用户并发测试”,但客观上来说 ...

  3. SpringMVC解决乱码

    SpringMVC解决乱码 在web.xml中配置如下代码

  4. 【Android】实现XML解析的几种技术

    本文介绍在Android平台中实现对XML的三种解析方式. XML在各种开发中都广泛应用,Android也不例外.作为承载数据的一个重要角色,如何读写XML成为Android开发中一项重要的技能. 在 ...

  5. UIToolBar

    //UIToolBar 是导航控制器默认隐藏的工具条 //设置UIToolBar的隐藏状态 self.navigationController.toolbarHidden = NO; //如何找到UI ...

  6. footer置底

    html代码: <div class="container"> <div cass="header"></div> < ...

  7. ORA-02292: integrity constraint (xxxx) violated - child record found

    在更新表的主键字段或DELETE数据时,如果遇到ORA-02292: integrity constraint (xxxx) violated - child record found 这个是因为主外 ...

  8. C#:枚举

    1. 枚举的综合运用 public enum Color { yellow, blue, green } class Program { static void Main(string[] args) ...

  9. Mysql 安装-windows X64

    1.首先下载mysql文件包 2.将下载到的mysql-5.6.24-x64.zip进行解压. 3.安装,直接下一步. 4.进入文件夹内复制my-default.ini文件,并重命名为my.ini 5 ...

  10. Apache 安装配置详情

    本次文章讲解Apache的安装和基本的配置 输入PHP环境搭建的一部分 PHP完整配置信息请参考 http://www.cnblogs.com/azhe-style/p/php_new_env_bui ...