Exploration

 Accepts: 190
 Submissions: 976
 Time Limit: 30000/15000 MS (Java/Others)
 Memory Limit: 131072/131072 K (Java/Others)
Problem Description

Miceren likes exploration and he found a huge labyrinth underground!

This labyrinth has NN caves and some tunnels connecting some pairs of caves.

There are two types of tunnel, one type of them can be passed in only one direction and the other can be passed in two directions. Tunnels will collapse immediately after Miceren passing them.

Now, Miceren wants to choose a cave as his start point and visit at least one other cave, finally get back to start point.

As his friend, you must help him to determine whether a start point satisfing his request exists.

Input

The first line contains a single integer TT, indicating the number of test cases.

Each test case begins with three integers N,~M1,~M2N, M1, M2, indicating the number of caves, the number of undirectional tunnels, the number of directional tunnels.

The next M1M1 lines contain the details of the undirectional tunnels. Each line contains two integers u,~vu, v meaning that there is a undirectional tunnel between u,~vu, v. (u~\neq~vu ≠ v)

The next M2M2 lines contain the details of the directional tunnels. Each line contains integers u,~vu, v meaning that there is a directional tunnel from uu to vv. (u~\neq~vu ≠ v)

TT is about 100.

1~\le~N, M1, M2~\le~1000000.1 ≤ N,M1,M2 ≤ 1000000.

There may be some tunnels connect the same pair of caves.

The ratio of test cases with $N~\gt~1000$ is less than 5%.

Output

For each test queries, print the answer. If Miceren can do that, output "YES", otherwise "NO".

Sample Input
2
5 2 1
1 2
1 2
4 5
4 2 2
1 2
2 3
4 3
4 1
Sample Output
YES
NO
Hint

If you need a larger stack size, please use #pragma comment(linker, "/STACK:102400000,102400000") and submit your solution using C++.

思路:并查集+拓扑排序;
先处理无向边,用并查集缩点,然后处理完后,所有的无向边都没了,并且无向边所连的点都缩成一个点,那么剩下的就是有向图了,那么有向图判环用拓扑排序。
  1 #include <stdio.h>
2 #include <stdlib.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<math.h>
6 #include<string.h>
7 #include<map>
8 #include<vector>
9 #include<queue>
10 using namespace std;
11 #pragma comment(linker, "/STACK:102400000,102400000")
12 typedef long long LL;
13 int bin[1000005];
14 int du[1000005];
15 vector<int>vec[1000005];
16 queue<int>que;
17 int id[1000005];
18 bool dfs(int n);
19 int fin(int x);
20 int cnt[1000005];
21 bool t[1000005];
22 int main(void)
23 {
24 int n;
25 scanf("%d",&n);
26 while(n--)
27 {
28 int i,j;
29 memset(cnt,0,sizeof(cnt));
30 memset(t,0,sizeof(t));
31 for(i = 0; i <= 1000000; i++)
32 {
33 bin[i] = i;
34 du[i] = 1;
35 vec[i].clear();
36 }
37 int N,m1,m2;
38 bool flag = false;
39 scanf("%d %d %d",&N,&m1,&m2);
40 while(m1--)
41 {
42 int a,b;
43 scanf("%d %d",&a,&b);
44 int aa = fin(a);
45 int bb = fin(b);
46 if(aa!=bb)
47 {
48 if(du[aa]>du[bb])
49 {
50 du[aa]+=du[bb];
51 bin[bb] = aa;
52 }
53 else
54 {
55 du[bb] += du[aa];
56 bin[aa] = bb;
57 }
58 }
59 else flag = true;
60 }
61 while(m2--)
62 {
63 int a,b;
64 scanf("%d %d",&a,&b);
65 if(!flag)
66 {
67 int aa = fin(a);
68 int bb = fin(b);
69 if(aa == bb)
70 flag = true;
71 else
72 { cnt[bb]++;
73 vec[aa].push_back(bb);
74 }
75 }
76 }
77 if(!flag)
78 {
79 int cn = 0;
80 for(i = 1; i <= N; i++)
81 {
82 int c = fin(i);
83 if(!t[c])
84 {
85 id[cn++] =c;
86 t[c] = true;
87 }
88 }
89 while(!que.empty())que.pop();
90 int ck = 0;
91 for(i = 0;i < cn;i++)
92 {
93 if(!cnt[id[i]])
94 {
95 que.push(id[i]);
96 ck++;
97 }
98 }
99 while(!que.empty())
100 {
101 int ff = que.front();
102 que.pop();
103 for(i = 0;i < vec[ff].size();i++)
104 {
105 int k = vec[ff][i];
106 cnt[k]--;
107 if(cnt[k] == 0)
108 ck++,que.push(k);
109 }
110 }
111 if(cn != ck)
112 flag = true;
113 }
114 if(flag)printf("YES\n");
115 else printf("NO\n");
116 }
117 return 0;
118 }
119 int fin(int x)
120 {
121 int i;
122 for(i = x; bin[i] != i;)
123 i = bin[i];
124 return i;
125 }

还有拓扑排序部分改成dfs也可以过,数据比较水。

  1 #include <stdio.h>
2 #include <stdlib.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<math.h>
6 #include<string.h>
7 #include<map>
8 #include<vector>
9 using namespace std;
10 #pragma comment(linker, "/STACK:102400000,102400000")
11 typedef long long LL;
12 int bin[1000005];
13 int du[1000005];
14 vector<int>vec[1000005];
15 bool vis[1000005];
16 int id[1000005];
17 bool t[1000005];
18 bool dfs(int n);
19 int fin(int x);
20 int cnt[1000005];
21 int main(void)
22 {
23 int n;
24 scanf("%d",&n);
25 while(n--)
26 {
27 int i,j;
28 memset(vis,0,sizeof(vis));
29 memset(t,0,sizeof(t));
30 memset(cnt,0,sizeof(cnt));
31 for(i = 0; i <= 1000000; i++)
32 {
33 bin[i] = i;
34 du[i] = 1;
35 vec[i].clear();
36 }
37 int N,m1,m2;
38 bool flag = false;
39 scanf("%d %d %d",&N,&m1,&m2);
40 while(m1--)
41 {
42 int a,b;
43 scanf("%d %d",&a,&b);
44 int aa = fin(a);
45 int bb = fin(b);
46 if(aa!=bb)
47 {
48 if(du[aa]>du[bb])
49 {
50 du[aa]+=du[bb];
51 bin[bb] = aa;
52 }
53 else
54 {
55 du[bb] += du[aa];
56 bin[aa] = bb;
57 }
58 }
59 else flag = true;
60 }
61 while(m2--)
62 {
63 int a,b;
64 scanf("%d %d",&a,&b);
65 if(!flag)
66 {
67 int aa = fin(a);
68 int bb = fin(b);
69 if(aa == bb)
70 flag = true;
71 else
72 {
73 vec[aa].push_back(bb);
74 }
75 }
76 }
77 if(!flag)
78 {
79 int cn = 0;
80 for(i = 1; i <= N; i++)
81 {
82 int c = fin(i);
83 if(!t[c])
84 {
85 id[cn++] =c;
86 }
87 }
88 for(i = 0; i <= cn; i++)
89 {
90 if(!vis[id[i]])
91 {
92 flag = dfs(id[i]);
93 if(flag)break;
94 }
95 }
96 }
97 if(flag)printf("YES\n");
98 else printf("NO\n");
99 }
100 return 0;
101 }
102 int fin(int x)
103 {
104 int i;
105 for(i = x; bin[i] != i;)
106 i = bin[i];
107 return i;
108 }
109 bool dfs(int n)
110 {
111 cnt[n] = 1;
112 vis[n] = true;
113 for(int i = 0; i < vec[n].size(); i++)
114 {
115 int c = vec[n][i];
116 if(cnt[c] == 1)
117 {
118 cnt[c] = 0;
119 return true;
120 }
121 else
122 {
123 if(dfs(c))
124 {
125 cnt[c] = 0;
126 return true;
127 }
128 }
129 }
130 cnt[n] = 0;
131 return false;
132 }

Exploration(hdu5222)的更多相关文章

  1. HDU-5222 Exploration(拓扑排序)

    一.题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5222 二.题意 给一个无向边+有向边的混合图,其中每条边只能使用一次,问图中是否存在环. 三.思路 ...

  2. poj 2594 Treasure Exploration (二分匹配)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 6558   Accepted: 2 ...

  3. RFID Exploration and Spoofer a bipolar transistor, a pair of FETs, and a rectifying full-bridge followed by a loading FET

    RFID Exploration Louis Yi, Mary Ruthven, Kevin O'Toole, & Jay Patterson What did you do? We made ...

  4. POJ2594 Treasure Exploration

    Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 8193   Accepted: 3358 Description Have ...

  5. 并查集+拓扑排序 赛码 1009 Exploration

    题目传送门 /* 题意:无向图和有向图的混合图判环: 官方题解:首先对于所有的无向边,我们使用并查集将两边的点并起来,若一条边未合并之前, 两端的点已经处于同一个集合了,那么说明必定存在可行的环(因为 ...

  6. poj 2594 Treasure Exploration(最小路径覆盖+闭包传递)

    http://poj.org/problem?id=2594 Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total ...

  7. [UVA] 784 - Maze Exploration

      Maze Exploration  A maze of rectangular rooms is represented on a two dimensional grid as illustra ...

  8. Treasure Exploration(二分最大匹配+floyd)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 7455   Accepted: 3 ...

  9. POJ 2594 Treasure Exploration(最小路径覆盖变形)

    POJ 2594 Treasure Exploration 题目链接 题意:有向无环图,求最少多少条路径能够覆盖整个图,点能够反复走 思路:和普通的最小路径覆盖不同的是,点能够反复走,那么事实上仅仅要 ...

随机推荐

  1. 工作学习2-gcc升级引发的崩溃

    分享一下调查gcc 8.0下,函数漏写返回值崩溃问题,调查记录. 现在新的硬件,基本操作系统都是redhat 8.0,升级后测试时,发现了一个崩溃问题,记录一下. ================== ...

  2. 基于《CSAPP第九章 虚拟内存》的思考和总结

    在csapp的描述中,虚拟内存的形象更加具化,虚拟内存被组织为一个由存放在磁盘上的N个连续的字节大小的单元组成的数组,内存充当了磁盘的缓存,粗呢内存的许多概念与SRAM缓存是相似的.虚拟页面有以下三种 ...

  3. 断言(assert)简介

    java中的断言assert的使用 一.assertion的意义和用法 J2SE 1.4在语言上提供了一个新特性,就是assertion功能,他是该版本再Java语言方面最大的革新. 从理论上来说,通 ...

  4. 基于 vue-cli 的 lib-flexible 适配

    基于 vue-cli3.0 的 lib-flexible 适配方案 第一步:下载安装相关依赖 第二步:创建 vue.config.js 文件并配置 第三步:在 main.js 中引入 lib-flex ...

  5. linux 挂载本地iso

    mount -t iso9660 -o loop /mnt/temp/rhel-server-6.5-i386-dvd.iso /mnt/cdrom -t :设备类型 iso9660是指CD-ROM光 ...

  6. Android Bitmap 全面解析(二)加载多张图片的缓存处理

    一般少量图片是很少出现OOM异常的,除非单张图片过~大~ 那么就可以用教程一里面的方法了通常应用场景是listview列表加载多张图片,为了提高效率一般要缓存一部分图片,这样方便再次查看时能快速显示~ ...

  7. [学习总结]1、View的scrollTo 和 scrollBy 方法使用说明和区别

    参考资料:http://blog.csdn.net/vipzjyno1/article/details/24577023 非常感谢这个兄弟! 先查看这2个方法的源码: scrollTo: 1 /** ...

  8. Python实战之MySQL数据库操作

    1. 要想使Python可以操作MySQL数据库,首先需要安装MySQL-python包,在CentOS上可以使用一下命令来安装 $ sudo yum install MySQL-python 2. ...

  9. vue中vuex的五个属性和基本用法

    VueX 是一个专门为 Vue.js 应用设计的状态管理构架,统一管理和维护各个vue组件的可变化状态(你可以理解成 vue 组件里的某些 data ). Vuex有五个核心概念: state, ge ...

  10. static JAVA

    static 关键字:使用static修饰的变量是类变量,属于该类本身,没有使用static修饰符的成员变量是实例变量,属于该类的实例.由于同一个JVM内只对应一个Class对象,因此同一个JVM内的 ...