Codeforces 1264F - Beautiful Fibonacci Problem(猜结论+找性质)
一道名副其实(beautiful)的结论题。
首先看到这道设问方式我们可以很自然地想到套用斐波那契数列的恒等式,注意到这里涉及到 \(F_{a+id}\),因此考虑斐波那契数列组合恒等式 \(F_{m+n+1}=F_mF_{n}+F_{m+1}F_{n+1}\),具体证明戳这里,这里就不再赘述了。
注意到此题还涉及后 \(18\) 位,也就是要将斐波那契数列的各种运算放到模 \(10^{18}\) 意义下进行,因此我们可以考虑找一下斐波那契数列在模 \(10^{18}\) 意义下的循环节,打个表可以发现斐波那契数列在模 \(10,100,1000,10000,100000,\cdots\) 意义下的循环节恰好是 \(60,300,1500,15000,150000\),后面依次乘 \(10\)(From my 题解 of Codeforces 193E)因此斐波那契数列在模 \(10^k(k\ge 3)\) 意义下的循环节为 \(1.5\times 10^k\),也就是说一定有 \(F_{1.5\times 10^k·i}\equiv 0\pmod{10^k}\),我们在下文中令 \(N=12\times 10^k\)(官方题解是 \(12\times 10^k\),至于为什么这么做我也不知道,反正对于我这种菜鸡而言,这种难度的题我只能搬官方题解/ll/wq),那么显然 \(1.5\times 10^k\mid N\),因此可以得到第一个非常 trivial 的结论:
Observation \(1\). \(F_{Ni}\equiv 0\pmod{10^k}(i\in\mathbb{N}_+)\)。
接下来我们考虑再来观察一些性质,可以注意到 \(F_{2N+1}=F_{N+1}^2+F_N^2\equiv F_{N+1}^2\pmod{10^{2k}}\),\(F_{3N+1}=F_{2N+1}F_{N+1}+F_{2N}F_N\equiv F_{2N+1}F_{N+1}\equiv F_{N+1}^3\pmod{10^{2k}}\),如此归纳下去可以得到一个普遍性的结论:
Observation \(2\). \(F_{xN+1}\equiv F_{N+1}^x\pmod{10^{2k}},x\in\mathbb{N}_+\)
接下来考虑探究一下这个 \(F_{N+1}\) 又有什么性质,有一个我也不知道怎么推出来(有哪位好心的鸽鸽教教蒟蒻这东西怎么证明啊 qwq/kel)的性质:
Observation \(3\). \(F_{N+1}\) 可以写成 \(8\times 10^k·t+1\) 的形式,其中 \(t\perp 10\)
证明不会
因此我们有 \(F_{xN+1}=F_{N+1}^x=(8\times 10^k·t+1)^x\),而我们暴力二项式定理将这东西展开就会发现平方项以上模 \(10^{2k}\) 都等于 \(0\),因此我们只用保留 \(1\) 次项和 \(0\) 次项即可,即
Observation \(4\). \(F_{xN+1}\equiv 8\times 10^k·t·x+1\pmod{10^{2k}}\)
接下来回到原问题,我们显然希望对每个 \(v=a+ix,i\in\mathbb{Z}\cap[0,n)\) 找到一个 \(p\) 满足 \(F_p\equiv v·10^u+q\pmod{10^{18}}\),其中 \(u\le 12,q<10^{u}\),这样原问题显然就做完了,因为这样从 \(10^u\) 位开始往后数一定可以得到 \(v\)。由于我们这些操作要放在模 \(10^{18}\) 意义下进行,因此我们取 \(k=9\),此时 \(N=1.2\times 10^{10}\),我们考虑令 \(X=125·t^{-1}·a\bmod{10^9},Y=125·t^{-1}·d\bmod{10^9}\),其中 \(t^{-1}\) 表示 \(t\) 在模 \(10^9\) 意义下的逆元,那么我们构造 \(b=XN+1,e=YN\) 符合题意,因为:
&F_{b+ie}\\
=&F_{(X+iY)N+1}\\
\equiv&8·10^9·t·(X+iY)+1\\
\equiv&8·10^9·t·125·t^{-1}(a+id)+1\\
=&10^{12}·(10^9k+1)·(a+id)+1\\
\equiv&10^{12}·(a+id)+1\pmod{10^{18}}
\end{aligned}
\]
符合我们刚才的构造。
一句话来说就是 \(b=368131125a\bmod 10^9·1.2\times 10^{10}+1,e=368131125d\bmod 10^9+1.2\times 10^{10}\)
于是我们就做完了这个难度 3.5k 的题(
代码(只有短短的 8 行):
#include <cstdio>
int n,a,d;
unsigned long long m=368131125,mod=1e9,x=1.2e10;
int main(){
scanf("%d%d%d",&n,&a,&d);
printf("%llu %llu\n",m*a%mod*x+1,m*d%mod*x);
return 0;
}
Codeforces 1264F - Beautiful Fibonacci Problem(猜结论+找性质)的更多相关文章
- Codeforces 1461F - Mathematical Expression(分类讨论+找性质+dp)
现场 1 小时 44 分钟过掉此题,祭之 大力分类讨论. 如果 \(|s|=1\),那么显然所有位置都只能填上这个字符,因为你只能这么填. scanf("%d",&n);m ...
- Codeforces Round #259 (Div. 1) A. Little Pony and Expected Maximum 数学公式结论找规律水题
A. Little Pony and Expected Maximum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.c ...
- Tetrahedron(Codeforces Round #113 (Div. 2) + 打表找规律 + dp计数)
题目链接: https://codeforces.com/contest/166/problem/E 题目: 题意: 给你一个三菱锥,初始时你在D点,然后你每次可以往相邻的顶点移动,问你第n步回到D点 ...
- 【CSP模拟赛】独立集(最长上升子序列&大力猜结论)
题目描述 有一天,一个名叫顺旺基的程序员从石头里诞生了.又有一天,他学会了冒泡排序和独 立集.在一个图里,独立集就是一个点集,满足任意两个点之间没有边.于是他就想把这两 个东西结合在一起.众所周知,独 ...
- Atcoder Grand Contest 031 D - A Sequence of Permutations(置换+猜结论)
Atcoder 题面传送门 & 洛谷题面传送门 猜结论神题. 首先考虑探究题目中 \(f\) 函数的性质,\(f(p,q)_{p_i}=q_i\leftarrow f(p,q)\circ p= ...
- Applying Eigenvalues to the Fibonacci Problem
http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/ The Fibonacci problem is a ...
- [codeforces 528]B. Clique Problem
[codeforces 528]B. Clique Problem 试题描述 The clique problem is one of the most well-known NP-complete ...
- Codeforces 55D Beautiful Number
Codeforces 55D Beautiful Number a positive integer number is beautiful if and only if it is divisibl ...
- codeforces.com/contest/325/problem/B
http://codeforces.com/contest/325/problem/B B. Stadium and Games time limit per test 1 second memory ...
随机推荐
- SpringCloud-初见
目录 前言 微服务概述 微服务与微服务架构 微服务优缺点 微服务技术栈 为什么选择SpringCloud作为微服务架构 SpringCloud入门 SpringCloud和SpringBoot的关系 ...
- 51.N皇后问题
n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 给定一个整数 n,返回所有不同的 n 皇后问题的解决方案. 每一种解法包含一个明确的 n 皇后问题的棋 ...
- [no code][scrum meeting] Alpha 2
项目 内容 会议时间 2020-04-07 会议主题 功能规格说明书review 会议时长 30min 参会人员 OCR组(肖思炀,赵涛)和产品经理 $( "#cnblogs_post_bo ...
- 无网络下,配置yum本地源
1. 新建一个没有iso镜像文件的虚拟机: 2. 本地上传一个镜像文件(CentOS7的镜像),到虚拟机已创建的目录: 例如:上传一个镜像文件CentOS-7-x86_64-Everything-17 ...
- Kubernetes集群环境搭建全过程
资源准备以及服务器初始化 所有服务器执行一下脚本进行配置信息初始化: #!/bin/bash cd `dirname $0` # 关闭selinux setenforce 0 sed -i '/SEL ...
- 21.7.24 test
\(NOIP\) 模拟赛 考差了. T1签到题.注意存在字符串长度为0,不能直接模.\(100\rightarrow0\) 代码: #include<bits/stdc++.h> usin ...
- 『学了就忘』Linux基础 — 15、了解Linux系统的目录结构
目录 1.一级目录说明 (1)一级目录列表 (2)/bin/和/sbin/目录说明 (3)/boot/目录说明 (4)/lib/和/lib64/目录说明 (5)/lost+found/目录说明 (6) ...
- jQuery根据地址获取经纬度
一.HTML部分 1 @*景区位置*@ 2 <tr> 3 <th>景区名称:</th> 4 <td><input class="txt ...
- AtCoder Beginner Contest 213 F题 题解
F - Common Prefixes 该题也是囤了好久的题目了,看题目公共前缀,再扫一眼题目,嗯求每个后缀与其他后缀的公共前缀的和,那不就是后缀数组吗?对于这类问题后缀数组可是相当在行的. 我们用后 ...
- spring mvc 原理(快速理解篇)
这两张图大家应该都不陌生. 从图上来看就是:一个请求过来,front controller根据具体的请求路径分派到具体的controller,具体的controller处理请求并把处理结果返回给fro ...