UOJ 422 - 【集训队作业2018】小Z的礼物(Min-Max 容斥+轮廓线 dp)
本来说要找道轮廓线 \(dp\) 的题目刷刷来着的?然后就找到了这道题。
然鹅这个题给我最大的启发反而不在轮廓线 \(dp\),而在于让我新学会了一个玩意儿叫做 Min-Max 容斥。
Min-Max 容斥大概讲的就是这样一件事情:对于任意集合 \(S\),\(\max(S)=\sum\limits_{T\subseteq S,T\ne\varnothing}(-1)^{|T|-1}\min(T)\),因为这个式子包含容斥系数 \((-1)^{|T|-1}\) 和集合的 \(\min,\max\),因此被称为 Min-Max 容斥。
证明还算容易,假设 \(S\) 中的元素从小到大依次为 \(a_1,a_2,\cdots,a_n\),考虑每个 \(a_i\) 作为最小值出现的贡献,显然 \(a_n\) 的贡献就是 \(a_n\),因为它只能在 \(T=\{a_n\}\) 中作为最小值,而对于 \(i<n\),\(a_i\) 为 \(T\) 的最小值当且仅当 \(T\) 可以写成 \(\{a_i\}\cup T'\) 的形式,其中 \(T'\subseteq\{a_{i+1},a_{i+2},\cdots,a_n\}\),考虑枚举 \(T'\) 的大小 \(s\),那么共有 \(\dbinom{n-i}{s}\) 个可选的 \(T'\),它们的贡献均为 \((-1)^s\),故总贡献为 \(\sum\limits_{i=0}^{n-i}\dbinom{n-i}{s}(-1)^s=0^{n-i}=0\),故总贡献就是 \(a_n=\max(S)\)。
接下来考虑怎样将 Min-Max 容斥使用到这道题上,我们考虑将所有 * 格子编个号,记 \(t_i\) 为编号为 \(i\) 的 * 格第一次被覆盖的时间,那么题目要求的值即为 \(E(\max\{t_i\})\),我们知道对于这样的集合,\(\max\) 是不太好求的,不过 \(E(\min\{t_i\})\) 非常好求,记 \(C\) 为有多少个 \(1\times 2\) 的矩形包含至少一个 * 格,\(D\) 为总共有多少个 \(1\times 2\) 的矩形(显然 \(D=n(m-1)+m(n-1)\)),那么 \(E(\min\{t_i\})=\dfrac{C}{D}\)。因此考虑套用 Min-Max 容斥,记 \(S\) 为 \(t_i\) 组成的集合所有,那么 \(E(\max(S))=\sum\limits_{T\subseteq S}(-1)^{T-1}E(\min(T))\)。直接枚举子集显然是不行的,不过我们发现 \(E(\min\{t_i\})\) 的表达式中,\(D\) 为定值,而 \(C\) 的范围也不会太大,最多不过 \(1200\),因此我们考虑转而枚举 \(C\) 并预处理所有子集 \(T\) 满足其对应的 \(C\) 为我们枚举的值的贡献之和。这东西怎么预处理呢?就要用到我们一开始说的轮廓线 \(dp\) 了,记 \(dp_{i,j,k,l}\) 为考虑了前 \(i\) 列,第 \(i\) 列考虑到了第 \(j\) 行,轮廓线左侧取/不取的状态为 \(k\),有 \(l\) 个 \(1\times 2\) 的矩形包含了至少一个 \(T\) 中的格子的所有子集 \(T\) 的 \((-1)^{|T|-1}\) 之和。搞清楚状态之后转移应该就比较容易了,具体见代码罢。
时间复杂度 \(n^2m^22^n\)。
最后总结一个小 trick,碰到那种形如求 \(E(\max(S))\) 的题目,如果 \(E(\min(S))\) 比较容易求得,那么可以考虑 Min-Max 容斥。
const int MAXN=6;
const int MAXM=100;
const int MAXP=64;
const int MAXCNT=1200;
const int MOD=998244353;
void inc(int &x,int y){((x+=y)>=MOD)&&(x-=MOD);}
int n,m,inv[MAXCNT+5];char s[MAXN+5][MAXM+5];
int dp[MAXM+5][MAXN+5][MAXP+5][MAXCNT+5];
int main(){
scanf("%d%d",&n,&m);int cnt=n*(m-1)+m*(n-1);inv[1]=1;
for(int i=2;i<=cnt;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
dp[1][1][0][0]=1;if(s[1][1]=='*') dp[1][1][1][0]=MOD-1;
for(int i=1;i<=m;i++) for(int j=1;j<=n;j++)
for(int k=0;k<(1<<n);k++) for(int l=0;l<=cnt;l++){
if(i==m&&j==n) continue;
if(!dp[i][j][k][l]) continue;
int ni=(j==n)?i+1:i,nj=j%n+1,add=0;
if(s[nj][ni]=='*')
inc(dp[ni][nj][k|(1<<nj-1)][l+(ni!=1)+(nj!=1)],MOD-dp[i][j][k][l]);
if((k>>j-1&1)&&(nj!=1)) add++;
if((k>>nj-1&1)) add++;
inc(dp[ni][nj][k&(~(1<<nj-1))][l+add],dp[i][j][k][l]);
}
int ans=0;
for(int i=1;i<=cnt;i++) for(int j=0;j<(1<<n);j++)
ans=(ans+1ll*dp[m][n][j][i]*inv[i]%MOD*cnt)%MOD;
printf("%d\n",MOD-ans);
return 0;
}
UOJ 422 - 【集训队作业2018】小Z的礼物(Min-Max 容斥+轮廓线 dp)的更多相关文章
- UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp
LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...
- [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...
- uoj#422. 【集训队作业2018】小Z的礼物(MIn-Max容斥+插头dp)
题面 传送门 题解 好迷-- 很明显它让我们求的是\(Max(S)\),我们用\(Min-Max\)容斥,因为\(Min(S)\)是很好求的,只要用方案数除以总方案数算出概率,再求出倒数就是期望了 然 ...
- 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...
- UOJ 449 【集训队作业2018】喂鸽子 【生成函数,min-max容斥】
这是第100篇博客,所以肯定是要水过去的. 首先看到这种形式的东西首先min-max容斥一波,设\(f_{c,s}\)表示在\(c\)只咕咕中,经过\(s\)秒之后并没有喂饱任何一只的概率. \[ \ ...
- [集训队作业2018]蜀道难——TopTree+贪心+树链剖分+链分治+树形DP
题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...
- uoj #450[集训队作业2018]复读机
传送门 \(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\) \(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\( ...
- UOJ#422. 【集训队作业2018】小Z的礼物
#422. [集训队作业2018]小Z的礼物 min-max容斥 转化为每个集合最早被染色的期望时间 如果有x个选择可以染色,那么期望时间就是((n-1)*m+(m-1)*n))/x 但是x会变,中途 ...
- 2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物
T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) ...
随机推荐
- sqlmap--tamper使用技巧
apostrophemask.py 适用数据库:ALL 作用:将引号替换为utf-8,用于过滤单引号 使用脚本前: tamper("1 AND '1'='1") 使用脚本后: 1A ...
- the Agiles Scrum Meeting 1
会议时间:2020.4.9 20:00 1.每个人的工作 今天已完成的工作 前端 学习JavaScript.Vue.ElementUI相关知识 issues:预习任务-前端:JavaScript 预习 ...
- Vue接收后端传过来excel表格的文件流并下载
题外话:当接收文件流时要确定文件流的类型,但也有例外就是application/octet-stream类型,主要是只用来下载的类型,这个类型简单理解意思就是通用类型类似 var .object.ar ...
- 单片机STM32的启动文件详解--学习笔记
启动文件简介 启动文件由汇编编写,是系统上电复位后第一个执行的程序.主要做了以下工作: 1.初始化堆栈指针SP=_initial_sp 2.初始化PC 指针=Reset_Handler 3.初始化中断 ...
- 洛谷 P4587 [FJOI2016]神秘数
大鸽子 llmmkk 正在补8.3号咕掉的题 时隔两个月,再看到这道题,我又是一脸懵,这种思维的培养太重要了 链接: P4587 题意: 给出 \(n\) 个点的序列,\(m\) 次询问区间神秘数. ...
- GPS与AGPS定位服务
最近客户反馈车子启动从车库开到地面后,机器定位相对OBD内部定位会慢很多. 机器定位主要依赖定位模块 + AGPS辅助定位. 其中定位模块目前主流支持的有以下三种定位系统. 一.GPS(全球定位系统) ...
- 清除行列 牛客网 程序员面试金典 C++ Python
清除行列 牛客网 程序员面试金典 C++ Python 题目描述 请编写一个算法,若N阶方阵中某个元素为0,则将其所在的行与列清零. 给定一个N阶方阵int[]mat和矩阵的阶数n,请返回完成操作后的 ...
- pascals-triangle leetcode C++
Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, Retu ...
- JS基础面试
1. JS是高级语言弱类型语言 脚本语言 1.1高级语言我们写完的代码不能直接执行,要先经过js引擎翻译成0101这种机器语言才能执行 1.2 弱类型语言变量可以在前一行设置为一个数字,下一行修改为一 ...
- uni-app使用wx-canvas实现微信小程序上显示地图map和坐标geo
源码 <template> <view class="echart-box"> <canvas class="ec-canvas" ...