HDU 5322 Hope
HDU 5322 Hope
考虑 $ dp[n] $ 表示 长度为 $ n $ 的所有排列的答案。
首先,对于一个排列来说,如果最大值在 $ i $ 位置,那么前 $ i - 1 $ 个数必然与 $ i $ 在一个联通块,且必然不会与 $ i $ 后面的数字在一个连通块。
那么考虑一种常用的排列的处理技巧,考虑将 $ n $ 插入 $ 1 \dots n-1 $ 的一个排列,比如插入的位置是 $ i $ 那么 $ i + 1 \dots n $ 相当于又是一个排列,而 $ 1 \dots i - 1 $ 的方案数是 $ A_{n-1}^{i-1} $ 所以答案就是
$ dp[n] = \displaystyle \sum_{i=1}^n A_{n-1}^{i-1} i^2 dp[n - i] $
这个式子看起来就很分治FFT。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#define ll long long
using namespace std;
#define P 998244353
#define MAXN (1 << 19) + 12
int n;
int a[MAXN];
int Pow(int x,int y) {
int res=1;
while(y) {
if(y&1) res=res*(ll)x%P;
x=x*(ll)x%P,y>>=1;
}
return res;
}
int wn[2][MAXN];
void getwn(int l) {
for(int i=1;i<(1<<l);i<<=1) {
int w0=Pow(3,(P-1)/(i<<1)),w1=Pow(3,P-1-(P-1)/(i<<1));
wn[0][i]=wn[1][i]=1;
for(int j=1;j<i;++j)
wn[0][i+j]=wn[0][i+j-1]*(ll)w0%P,
wn[1][i+j]=wn[1][i+j-1]*(ll)w1%P;
}
}
int rev[MAXN];
void getr(int l) { for(int i=1;i<(1<<l);++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l-1); }
void NTT(int *A,int len,int f) {
for(int i=0;i<len;++i) if(rev[i]<i) swap(A[i],A[rev[i]]);
for(int l=1;l<len;l<<=1)
for(int i=0;i<len;i+=(l<<1))
for(int k=0;k<l;++k) {
int t1=A[i+k],t2=A[i+l+k]*(ll)wn[f][l+k]%P;
A[i+k]=(t1+t2)%P;
A[i+l+k]=(t1-t2+P)%P;
}
if( f == 1 ) for(int inv=Pow(len,P-2),i=0;i<len;++i) A[i]=A[i]*(ll)inv%P;
}
int f[MAXN];
int A[MAXN] , B[MAXN];
int J[MAXN] , invJ[MAXN];
void CDQ(int *a,int *b,int l,int r){
if( l == r ) return;
int m = l + r >> 1;
CDQ( a , b , l , m );
int p = 1 , len = 0;
while( p <= ( r - l + 1 ) * 2 ) p <<= 1 , ++ len;
getr( len ) , getwn( len );
for( int i = 0 ; i < p ; ++i ) A[i] = B[i] = 0;
for( int i = l ; i <= m ; ++i ) A[i - l] = 1ll * a[i] * invJ[i] % P;
for( int i = 0 ; i <= r - l ; ++i ) B[i] = 1ll * i * i % P;
NTT( A , p , 0 ) , NTT( B , p , 0 );
for( int i = 0 ; i < p ; ++i ) A[i] = 1ll * A[i] * B[i] % P;
NTT( A , p , 1 );
for( int i = m + 1 ; i <= r ; ++i ) a[i] = ( a[i] + 1ll * J[i - 1] * A[i-l] % P ) % P;
CDQ( a , b , m + 1 , r );
}
int main() {
J[0] = invJ[0] = 1;
for( int i = 1 ; i < MAXN ; ++ i ) J[i] = 1ll * J[i - 1] * i % P , invJ[i] = Pow( J[i] , P - 2 );
f[0] = 1;
CDQ( f , a , 0 , 100006 );
int x;
while( cin >> x ) printf("%d\n",f[x]);
}
HDU 5322 Hope的更多相关文章
- HDU 5322 Hope ——NTT 分治 递推
发现可以推出递推式.(并不会) 然后化简一下,稍有常识的人都能看出这是一个NTT+分治的情况. 然而还有更巧妙的方法,直接化简一下递推就可以了. 太过巧妙,此处不表,建议大家找到那篇博客. 自行抄写 ...
- HDU 5322 Hope (分治NTT优化DP)
题面传送门 题目大意: 假设现在有一个排列,每个数和在它右面第一个比它大的数连一条无向边,会形成很多联通块. 定义一个联通块的权值为:联通块内元素数量的平方. 定义一个排列的权值为:每个联通块的权值之 ...
- HDU 5319 Painter(枚举)
Painter Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Su ...
- HDOJ 2111. Saving HDU 贪心 结构体排序
Saving HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- hdu 4859 海岸线 Bestcoder Round 1
http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...
- HDU 4569 Special equations(取模)
Special equations Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- HDU 4006The kth great number(K大数 +小顶堆)
The kth great number Time Limit:1000MS Memory Limit:65768KB 64bit IO Format:%I64d & %I64 ...
- HDU 1796How many integers can you find(容斥原理)
How many integers can you find Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d ...
随机推荐
- Java版人脸检测详解上篇:运行环境的Docker镜像(CentOS+JDK+OpenCV)
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- Linux入门必须养成的七大习惯
对于很多Linux初学者来说,在刚开始使用linux系统时会感到很多的不适.这里为大家整理了自己以前linux入门时别人告诉我的七个习惯.我相信如果你运用了这七个习惯,在你使用Linux时你会感觉更安 ...
- [CSP-S2021] 括号序列
链接: P7914 题意: 有一堆规则,然后判断给定字符串有多少种填法符合规则. 分析: 一眼区间dp,状态数 \(n^2\),我们来分析这些规则. 把这些规则分成三类,第一类可以预处理出区间是否能表 ...
- 注意 .NET string.GetHashCode() 用法
需求案例:需要把字符串存入数据库,并且要求数据库中不能有重复的字符串,由此就引出了将字符串hash成特定的hash值,依靠查询hash值是否重复来判断字符串是否重复.这样做的好处在于查询重复字符串的代 ...
- 数组中只出现过一次的数字 牛客网 剑指Offer
数组中只出现过一次的数字 牛客网 剑指Offer 题目描述 一个整型数组里除了两个数字之外,其他的数字都出现了偶数次.请写程序找出这两个只出现一次的数字. def FindNumsAppearOnce ...
- poj 2724 Purifying Machine(二分图最大匹配)
题意: 有2^N块奶酪,编号为00...0到11..1. 有一台机器,有N个开关.每个开关可以置0或置1,或者置*.但是规定N个开关中最多只能有一个开关置*. 一旦打开机器的开关,机器将根据N个开关的 ...
- hdu 2147 kiki's game(DP(SG)打表找规律)
题意: n*m的棋盘,一枚硬币右上角,每人每次可将硬币移向三个方向之一(一格单位):左边,下边,左下边. 无法移动硬币的人负. 给出n和m,问,先手胜还是后手胜. 数据范围: n, m (0<n ...
- 王爽汇编第十章,call和ret指令
目录 王爽汇编第十章,call和ret指令 call和ret指令概述: ret和retf ret指令 retf指令 call 和 ret 的配合使用 call指令详解 call原理 call指令所有写 ...
- openstack 后期维护(四)--- 删除僵尸卷
前言: 在长时间使用openstack之后,删除虚机后,经常会有因这样那样的问题,导致卷处于僵尸状态,无法删除! 状态一: 虚机已近删除,然而卷却挂在到了 None上无法删除 解决办法: 1.# ci ...
- seq2seq之双向解码
目录 背景介绍 双向解码 基本思路 数学描述 模型实现 训练方案 双向束搜索 代码参考 思考分析 文章小结 在文章<玩转Keras之seq2seq自动生成标题>中我们已经基本探讨过seq2 ...